Improved Shallow-Water Wave Modeling

Jane McKee Smith and Donald T. Resio US Army Engineer Research & Development Center Coastal and Hydraulics Laboratory

JS Army Corps of Engineers

Outline

- Introduction
- Half-Plane STWAVE
- Full-Plane STWAVE
- Enhancements
 - Bottom interaction
 - Diffraction/Reflection
 - 3G Source Terms
- Summary

JS Army Corps of Engineers

Global vs. Coastal

Correct Deepwater Physics

No Regional/Local Tuning

Correct Shallow-water Physics

JS Army Corps of Engineers

Nearshore Transformation

- Sediment Transport
- Coastal Flooding and Storm Damage
- Navigation and Harbor/Jetty Design

JS Army Corps of Engineers

Nearshore Transformation

Past

- Distribution: H, T, θ
- Climate statistics (lookup tables)
- Refraction, shoaling, and breaking

Present/Future

- Directional spectra
 - Smith & Gravens (2002)
 - ~50% error reduction
- Full time histories
 - Interaction w/ currents & water levels
 - Update bathymetry
 - Complex spectra
- Advanced transformation processes

JS Army Corps of Engineers

Longshore Transport Estimates

Coastal and Hydraulics Laboratory - ERDC

JS Army Corps of Engineers

Nearshore Transformation

Past

- Distribution: H, T, θ
- Climate statistics (lookup tables)
- Refraction, shoaling, and breaking

Present/Future

- Directional spectra
 - Smith & Gravens (2002)
 - ~50% error reduction
- Full time histories
 - Interaction w/ currents & water levels
 - Update bathymetry
- Advanced transformation processes

JS Army Corps of Engineers

Advanced Processes

- Wave-current interaction
- Wind input
- Wave-wave interactions
- Whitecapping
- Wave-bottom interaction

- Diffraction
- Reflection
- Transmission
- Wave asymmetry

How good are present formulations in shallow water?

How many times do we need to change models for a single application?

JS Army Corps of Engineers

Modeling Requirements

- Grid Flexibility
- Efficiency
- Ease of Application
- Robustness

No Model Tweaking

JS Army Corps of Engineers

Half-Plane STWAVE

- Steady-State, Phase-Averaged
- Linear Refraction and Shoaling
- Depth and Steepness-Limited Breaking
- Linear Wave-Current Interaction
- 2G Wave Generation
- Half Plane
- Resio (1988a,b)
- Smith et al. (2001, 2002)
- Windows Interface (SMS)

JS Army Corps of Engineers

Documentation on Web

- PDF User's Guide
- Latest executable
- Sample files
- Sample applications Willapa Bay Grays Harbor Ponce Inlet

STWAVE: Steady-State Spectral Wave Model User's Guide for STWAVE Version 3.0 Jane McKee Smith, Ann R. Sherlock. and Donald T. Resio

http://chl.erdc.usace.army.mil/CHL.aspx?p=s&a=Software;9

JS Army Corps

Engineers

Agrowed for public release, dolitication or unimited

ERDC/CHL SR-01-1

ydraulics Laboratory

Recent Corps STWAVE Applications

JS Army Corps of Engineers

STWAVE (Half Plane) Advantages

- Substantially lower memory requirements
- Faster computational speed
- No tuning
- Benchmarked
- Robust
 - Widely used & tested
 - Parametric
- Minimal open boundary impact
- Automated nesting
 - Interface (SMS) for input & output

JS Army Corps of Engineers

STWAVE (Half Plane) Disadvantages

- Oblique energy is lost (> 60 deg to x-axis)
- 2G physics missing details
- Steady state
- Simplified diffraction
- Processes neglected
 - Transmission
 - Reflection
 - Bottom interactions
- Square grid cells, fixed angle bands

JS Army Corps of Engineers

- Step 1: Full-plane, 2G, Steady-state Model
 Step 2: Bottom Interaction, Diffraction, and Reflection
 Step 3:
 - 3G, Nonsteady, and 3-Wave Interactions

JS Army Corps of Engineers

Conservation of spectral action balance

$$(C_{ga})_{x} \frac{\partial}{\partial x} \frac{C_{a}C_{ga}\cos(\mathbf{m}-\mathbf{a})E(f,\mathbf{a})}{\mathbf{w}_{r}} + (C_{ga})_{y} \frac{\partial}{\partial y} \frac{C_{a}C_{ga}\cos(\mathbf{m}-\mathbf{a})E(f,\mathbf{a})}{\mathbf{w}_{r}} = \sum \frac{S}{\mathbf{w}_{r}}$$

Back-traced wave rays

JS Army Corps of Engineers

Solved in 4 Quadrants

JS Army Corps of Engineers

Solved in 4 quadrants, alternate sweeps Iteration required for complex bathymetry

JS Army Corps of Engineers

Sources Terms

$$F_{in} = \boldsymbol{I} \, \frac{\boldsymbol{r}_a}{\boldsymbol{r}_w} 0.85 C_p \, \frac{\boldsymbol{u}_*}{g}$$

$$(f_p)_{i+1} = \left[(f_p)_i^{-3.33} + \frac{2.5\Delta x}{g\cos(a)} \left(\frac{u_*}{g}\right)^{1.33} \right]^{-0.3}$$

$$\Gamma_{E} = \frac{eg^{\frac{1}{2}}E_{tot}^{3}k_{p}^{\frac{9}{2}}}{\tanh^{\frac{3}{4}}(k_{p}h)}$$

 $H_{mo_{\text{max}}} = 0.1L \tanh kh$

JS Army Corps of Engineers

- dx and dy not required to be equal, dq arbitrary
- TMA spectral generated included (H, T, q input allowed)
- Refraction and shoaling precomputed for efficiency (redo for tide or current variations)

JS Army Corps of Engineers

JS Army Corps

of Engineers

Diffraction and Reflection

- Diffusion operator in STWAVE + directional spread sufficient in most cases
- More rigor required for surface-piercing structures

JS Army Corps of Engineers

Diffraction – Mild Slope Equation

$$\frac{1}{a} \left\{ \nabla a + \frac{1}{CC_g} \nabla a \cdot \nabla (CC_g) \right\} + k^2 - \nabla \mathbf{r} \cdot \nabla \mathbf{r} = 0$$
$$\nabla \cdot (a^2 CC_g \nabla \mathbf{r}) = 0$$

Requires high spatial resolution (L/8) Solution is phase dependent

JS Army Corps of Engineers

Diffraction

- Behind structure, diffraction dominates
- Solve diffraction based on geometry
 - Complex amplitude solved as integral along the boundary (Huyghens-Kirchoff integral)
 - Integrals (summations) pre-computed
 - Solution not restricted by grid resolution
- Add refraction, shoaling, and source terms

One-Arm Breakwater

Red is diffraction Only, Green is w/ refraction, shoaling and breaking

JS Army Corps of Engineers

Two-Gap Breakwater

Red is diffraction Only, Green is w/ refraction, shoaling and breaking

JS Army Corps of Engineers

Absorbing and Reflecting Wall

ĬĸĬ

Coastal and Hydraulics Laboratory - ERDC

JS Army Corps of Engineers

3G Source Terms

• DIA limitation in coastal regions:

- Complex spectral shapes
- Heterich & Hasselmann (1980) scaling k_ph > 1
- (e.g., 10-sec wave in 20 m depth)

JS Army Corps of Engineers

3G Source Terms

JS Army Corps of Engineers

Summary

Sophisticated Nearshore Modeling Requires:

- Advanced physics
- Improved efficiency and flexibility

On-going Effort with STWAVE

- Wind input function
- High-frequency breaking
- Arbitrary-depth wave-wave interactions
- Incorporation of 3-wave interactions
- Benchmarking

JS Army Corps of Engineers