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OBJECTIVES

• STUDY NON-LINEAR INTERACTIONS IN SHALLOW WATER FROM
A STATISTICAL POINT OF VIEW

• DEVELOP A WAVE ACTION BALANCE EQUATION TO BE APPLIED
IN SHALLOW WATER

• PREDICT THE STATISTICAL PROPERTIES OF SURFACE
ELEVATION (not just wave spectra but also skewness) IN SHALLOW
WATER



MOTIVATIONS

•“…Generally speaking, the weakly nonlinear theory
has narrow frames of applicability in shallow water…”
(from Zakharov 1999, Eur. J. Mech. B/Fluids)

• Recent paper by Janssen (JPO 2003) in which the role
of quasi-resonant interactions in deep water are
addressed



LIMITATIONS OF THE KINETIC EQUATION

The standard kinetic equation describes the evolution of
free waves

• While in deep water the contribution of bound waves
can be neglected, as the water depth decreases bound
waves become important

• In order to derive the kinetic equation, three-wave
interactions are removed by a canonical transformation.
In the shallow water limit, this transformation reduces
to the Stokes expansion which converges only if

Ur=ak/(kh)3<<1



DETERMINISTIC THREE-WAVE INTERACTION
EQUATION
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The goal is to write an evolution equation for the wave action
spectrum:

• Homogeneity:

< >= −a k a k N k k k( ) ( ) ( ) ( )*
0 1 0 0 1δ

• Quasi Gaussian Approximation:

< >= − − + − −a a a a N N k k k k k k k k1 2 3 4 1 2 1 3 2 4 1 4 2 3
* * ( ( ) ( ) ( ) ( ))δ δ δ δ

• We end up with two coupled equations: one for the wave
spectrum and the second for the bi-spectrum. The equation for
the bi-spectrum is integrated analytically and the system is
reduced to a single evolution equation for the wave action
spetrum:
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THE SPREAD DELTA FUNCTION
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In the shallow water limit the equation becomes:
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Skewness can also be estimated directly form the wave
spectrum:
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PRELIMINARY TEST OF THE STOCHASTIC EQUATION FOR
WAVE SPECTRA:

Compare spectra and skewness from numerical simulations from
the stochastic equation with numerical simulations from ensemble
deterministic equation

We will consider a standard Jonswap spectrum and use it as a
boundary condition for our simulations and look at the evolution in
space of spectra and skewness.

Three different conditions are considered:

Ur = 0.11 kh=0.34

Ur = 0.20 kh=0.29

Ur = 0.46  kh=0.23
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Ur=0.2
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Ur=0.46
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CONCLUSIONS
We have developed a wave action balance equation
applicable in shallow water

The equation is based on the most general deterministic
equation that includes three wave interactions

In the limit of shallow water, results from the equation
have been compared with ensemble numerical simulations
of the deterministic equation for different Ursell number in
constant depth

For the conditions considered, the main features of the
dynamic (including skewness) are well captured by the
developed model


