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• Hasselmann equation (HE) and its numerical solution

• Self-similar solutions (SSS) for Hasselmann equation (HE)

• Numerical confirmation of SSS in swell case

• Numerical confirmation of SSS in wind-driven case

Plan:



The Hasselmann equation
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Numerical approach: Resio-Tracy code

- Integration around locus defined by:
k1+k2=k3+k4

ω1+ω2=ω3+ω4 

where k1 and k3 are fixed along curves
- Grid resolution 71x36 point in frequency-angle space
- Logarithmic grid in frequency
- Frequency range 
- Deep water case 
- Wind speed 1m/sec – 20 m/sec 
- Wind input cutoff 

HzfHz 0.202.0 <<

Hzfcutoff 35.1>



Known issues

• Numerical instability at high frequencies, 
especially for wind-driven cases

• Small time step, especially for wind-driven cases



The Latest Features:

•Up to 200 times bigger time-steps for wind-driven 
cases

•Numerical instability-free simulation

•Significantly faster than physical time



Energy and Action Cascades
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Direct cascade

Zakharov, Filonenko 1966

Inverse cascade

Zakharov, 1966

Zakharov, Zaslavskii 1983

Numerical study of Kolmogorov spectra for wind-driven sea 
Pushkarev, Resio, Zakharov Physica D  2003

Experimental study by Toba, 1972



Duration-limited growth: times 1, 2, 4, 8, 16, 32 
hours (wave input Donelan et al. 1987)

Motivation for studying of self-similarity 



Looking for SSS in swell situation (no forcing/ 
dissipation):
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After substitution into HE:
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From the condition of stationary wave action for 
the swell:
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Swell solution. Extracting function
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Numerical solutions for KE in windKE in wind--driven casedriven case

U=10m/sec τ=1, 2, 4, 8, 16, 32 hours



Looking for SSS in stationary forcing situation

After substitution into HE:
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, the effect of inS1≥α dissSand
vanishes as ∞→t and the same condition

can provide SSS solution. 
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For wind-driven case one can assume that
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So,  one can expect
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Self-similarity of wind wave 
evolution in experimental studies 
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Numerical vs JONSWAP spectrum

U/Cp=1.242



Summary

• There is a strong tendency of numerical 
solutions of the HE to self-similar behavior 

• These numerical results are consistent with 
theoretical  analysis

• The self-similar solutions can be considered 
as the extensions of the Kolmogorov-
Zakharov cascade solutions



The End


