

A Comparison of Hindcast and Measured Wave Spectra

Graham Feld Fugro GEOS, Inc.

Gunnar Mørk Fugro OCEANOR AS

 Colin Grant (BP) for donation of West of Shetland measured wave data

• Vince Cardone (Oceanweather, Inc) for donation of AES40 hindcast data

Presentation Outline

- Motivation
- Data sets
- Synthesis of measured directional spectra
- Total sea state parameter comparison
- Spectral analysis and partitioning
- Spectral parameterisation
- Comparison of spectral parameters
- Summary

Motivation

- Determination of spectral shapes has significance for both operability and design of floating structures
- To compare the spectral shape parameters between hindcast and measured wave partitions
- Identify any patterns in the comparison

Reasons for Selection

- Co-locational and contemporary data available
- Directional information was available for all data sets
- Two very different locations:
 - Gulf of Mexico a closed basin
 - West of Shetland open ocean

Synthesis of Measured Directional Spectra

Gulf of Mexico

- Parameters
 - **S** spectral energy density in m²/Hz

D mean wave direction, in degrees from true North

$$r_1 [(a_1^2 + b_1^2)^{0.5}]/a_0$$

$$r_2 [(a_2^2 + b_2^2)^{0.5}]/a_0$$

$$a_1$$
 270 – tan⁻¹(b₁/a₁)

 a_2 270 – (0.5*tan⁻¹(b₂/a₂) + {0 or 180})

• Weighted

$$S(f, \mathbf{q}) = \frac{\mathbf{p}}{\mathbf{p}} \left(\begin{array}{c} \text{Fouriev sum:} \\ 0.5 + \frac{2}{3}r_1 \cos(\mathbf{q} - \mathbf{a}_1) + \frac{1}{6}r_2 \cos(2(\mathbf{q} - \mathbf{a}_2)) \\ \frac{1}{6}r_2 \cos(2(\mathbf{q} - \mathbf{a}_2)) \end{array} \right)$$

Spectra averaged over 6 hours

Synthesis of Measured Directional Spectra

West of Shetland

- Parameters
 - S spectral energy density in m²/Hz
 - a₁,b₁ first Fourier coefficients
 - a₂,b₂ second Fourier coefficients
- Maximum Entropy Method
- 9-point averaging
- Spectra averaged over 6 hours

Data Characteristics

Gulf of Mexico

- "6-hour average"
- directional resolution 15°
- frequency resolutions

Data Characteristics

West of Shetland

- "6-hour average"
- directional resolution 15°
- frequency resolutions

Total Sea State Parameter Comparison - Hs

Gulf of Mexico Jan - Dec 2002

Total Sea State Parameter Comparison - Tp

Gulf of Mexico Jan - Dec 2002

Total Sea State Parameter Comparison - Hs

West of Jan - Jul 1995

Total Sea State Parameter Comparison - Tp

West of Jan - Jul 1995

• Spectra partitioned on the basis of a steepest ascent matrix

(Hanson and Phillips, 2001, Aarnes and Krogstad, 2001)

• Tunable splitting parameters:

identification of wind-sea

distance between peaks v peak spread

saddle point v peak energy

partition energy

Partition Comparisons

Gulf of Mexico - Part I

Partition Comparisons

Gulf of Mexico - Part II

Partition Comparisons

West of Shetland

Each spectral partition fitted using:

- parabola around spectral peak to identify f_m
- a derived on the basis that 1.35 f_m to 2.0 f_m is as a P-M spectrum
- $g s_a$ and s_b fitted by least squares
- for g< 1 a P-M was assumed with least squares fit of f_m and a

A normalised rms error and bias were calculated

Comparison of Spectral Parameters

- Spectra were chosen for comparison only if:
 - rms error < 5%
 - bias <5%
- Each fitted spectrum was placed in Hs-Tp bin of size 1m x 2secs
- Spectral parameters were aggregated in each bin

Gulf of Mexico Comparison

Comparison of median values of \boldsymbol{g}

TUGRD

West of Shetland Comparison

Comparison of median values of g

Quantile-Quantile Comparison of g

Quantile-Quantile Comparison of *a*

Quantile-Quantile Comparison of s_a

Quantile-Quantile Comparison of $s_{\rm b}$

Quantile-Quantile Comparison of $s_{\rm b}$

Overall model spectra were:

- less peaked than the measured spectra (smaller g larger a) - despite 6-hour averaging
- slightly more energy on If side of peak than the measured spectra (larger s_a , smaller s_b)

Summary II

• AES40 model performed very well, ECMWF WAM OK

With these data:

- median gvalues of steepest seas in range 1.5 3.0 (Gulf of Mexico measured data in range 2.5 - 5.0)
- Causes of differences:
 - by chance?
 - artefact of analysis methodology?
 - comparative frequency resolution?
 - duration of spectral averaging?
 - real differences?