An intercomparison of state-of-the-art wave models in the NW Atlantic

R. Padilla,W. Perrie, B.Toulany and P. Smith Zhang W, and Jiménez–Hernández S.

> Bedford Institute of Oceanography Instituto de Investigación en Ingeniería UAT

CONTENT

- 1. Introduction
- 2. Work Objectives
- 3. Numerical wave models and Set-up
- 4. Results

The bomb of January 2002

The superbomb of January 2000

5. Conclusions

Importance of reliable wave models and forecasts:

- •Marine forecasting :marine operations, oil and gas, . ..
- •Offshore design criteria (Hindcasting)
- •Search and rescue (SAR)
- •Transport and dispersion of dissolved and suspended matter
- •Accurate estimates of coastal erosion
- •Ship routing
- •Design and protection of ports and harbors
- •Safety of coastal settlements.

Waves have impact on most of the coastal processes : Physical (Tides, Surges, air-sea), Geological, . . Biological, . .

OBJECTIVES

To evaluate three wave models and determine which perform best in shallow waters to forecast waves at the Gulf of Maine

Compare 3 operational wave models

•WAMC4-PROMISE

•WAVEWATCH-III Ver. 2.22

•SWAN-C3 Ver. 40.20

Validation in situ measurements: DWR, ADCP AND NWR

Wave-parameters (time series: Hs, Tp).

02JAN12 03:00

BIOLOC.

Action Balance Equation

$$\frac{\partial N}{\partial t} + \frac{\partial}{\partial x}(c_x N) + \frac{\partial}{\partial y}(c_y N) + \frac{\partial}{\partial s}(c_s N) + \frac{\partial}{\partial q}(c_q N) = \frac{S_{tot}}{s}$$

Deep water

$$S_{tot} = S_{in} + S_{nl4} + S_{wc}$$

Shallow water

$$+ S_{bf} + S_{nl3} + S_{bk} + \dots$$

Global-Regional SWAN Implicit Scheme No CFL-Criterion Regional-Laboratory

WW3 and WAM

Explicit Scheme

CFL-Criterion

GRID SYSTEM

GULF OF MAINE

3. Numerical wave models and Set-up
--

WIND and WAVE DATA

WIND			
Storm	Model	?t [hrs]	Resolution[deg]
Jan/2002	NOGAPS- COAMPS	6	1 – 0.2
Jan/2000	MC2	6, 1	0.2

Waves			
Storm	Device	?t [hrs]	
Jan/2002	ADCP-Buoy (DWR)	2 – 0.3	
Jan/2000	NDBC –Buoys (WR)	1	

4. The bomb of January 2002

Bomb of January 2002 WIND FIELDS

4. The bomb of January 2002

Depth [m] Fine resolution grid -100 45 -200 -300 44 PANUKE Latitude [Deg.] -400 ADCP and DWR -500 944142 -600 42 700 -800 -900 <1000 49.72 -70 -66 -64 Longitude [Deg.] -62 -60 -68

4. The bomb of January 2002

mean measur	ements from the DWR and ADCP. Hs [m]			T_p [s]				
Model	bias [m]	si [-]	rmse [m]	ioa [-]	bias [s]	si [-]	$\mathrm{rmse}\left[\mathbf{s}\right]$	ioa [-]
WAM	0.05	0.36	1.04	0.92	1.28	0.32	2.73	0.59
WW3	0.06	0.25	0.74	0.97	1.66	0.28	2.40	0.66
SWAN in WAM	0.41	0.25	0.73	0.96	1.35	0.22	1.89	<u>0.74</u>
SWAN in WW3	0.12	0.23	0.66	0.97	1.82	0.31	2.54	0.64

Table 5: Statistics comparing Hs and T_P from the three wave models against the

Index of agreement - *ia* potential variance - *pe*

Normally 0< ioa<1

$$ioa = 1 - \frac{rmse^2}{pe} = 1 - \frac{\sum_i |y_i - x_i|^2}{\sum_i (|y_i - \overline{X}| + |x_i - \overline{X}|)^2}$$

4. The super bomb of January 2002

ERSIDIO AVTR

PANUKE

4. The super bomb of January 2002

TAN DIGITIES

PANUKE

4. The super bomb of January 2002					
Combining four locat	ions	Hs			
Model	bias [m]	si [-]	rmse [m]	ioa [-]	
WAM	0.92	0.28	1.37	0.88	
WW3	<u>0.67</u>	<u>0.20</u>	<u>1.06</u>	<u>0.92</u>	
SWAN in WAM	1.09	0.27	1.40	0.89	
SWAN in WW3	0.96	0.24	1.29	0.89	
WW3-1HW	0.87	0.20	1.22	0.90	
		Тр			
Model	bias [s]	si [-]	rmse [s]	ioa [-]	
WAM	1.11	0.24	2.31	0.72	
WW3	1.05	0.21	2.00	0.78	
SWAN in WAM	1.36	0.63	2.06	0.76	
SWAN in WW3	1.43	0.24	2.21	0.75	
WW3-1HW	<u>0.89</u>	<u>0.19</u>	<u>1.87</u>	<u>0.80</u>	

Conclusions

•SWAN performs (a little) better nested in WW3, than in WAM

•Disk usage and CPU time can increase drastically in shallow water SWAN allows change of spectrum-resolution during nesting, WW3 and WAM do not

THE END

Special thanks to the Organizing Committe for their support

