Forecast Divergences of a Global Wave Model

Diana Greenslade Bureau of Meteorology Research Centre, Melbourne, Australia

Ian Young Swinburne University of Technology, Melbourne, Australia

Australian Government Bureau of Meteorology

Outline

Motivation

- How best to use observations in wave model data assimilation systems?
- Method
 - NMC method spatial correlations of forecast differences
- Results
 - Isotropic/Anisotropic
 - Forecast period
 - Seasonal variability
- Summary

Australian Government Bureau of Meteorology

Method

- Want to know spatial scale of background errors in wave model
- 'NMC method'

- "National Meteorological Center"
- Look at differences between forecasts of SWH at different ranges valid at same time e.g. 48-hour vs. 24-hour
- How much and on what spatial scales the error grows within 24-hours
 - o Perfect wind forcing, perfect wave model:
 - 48-hour forecast and 24-hour forecast valid at the same time would be identical.
 - Perfect wind forcing, imperfect wave model
 - Wave forecasts still identical
- Differences between the two are due to errors in wind forecasts and how the wave model propagates those errors.

Australian Governmen Bureau of Meteorology

Method (cont.)

Issues:

Forecast divergence = background error?

- Background error = analysis error + forecast error
- Forecast divergence doesn't give whole picture
- Can still get useful information

Method (cont.)

- Collect 3 months of t48 t24 SWH differences at 12-hour intervals
- Calculate spatial correlations:

$$\boldsymbol{r}(r,\boldsymbol{q}) = \frac{(t48_{j} - t24_{j})(t48_{k} - t24_{k})}{\sqrt{(t48_{j} - t24_{j})^{2}} (t48_{k} - t24_{k})^{2}}$$

$$r = \text{dist} \quad j \to k$$
$$q = \text{angle } j \to k$$

Bureau of Meteorology

Annual average correlation scale

[Operational Bureau system: 200km globally]

Bureau of Meteorology

3 variable parameters

- eccentricity
- tilt
- length scale

Australian Government Bureau of Meteorology

Annual average

[Operational Bureau system: isotropic]

Forecast period Anisotropic

Indian Ocean

t36_t24
t48_t24
t60_t24
t72_t24
t84_t24
t96_t24

Pacific Ocean

t36_t24
t48_t24
 t60_t24
t72_t24
 t84_t24
t96_t24

Issues

Relevance to data assimilation

- NMC method:
 - Divergence of forecasts
 - No analysis error
 - Lower bound to background error
- Typically, operational wave data assimilation systems use homogenous, isotropic spatial scales for background error
 - Background errors vary over globe
 - Forecast divergence component: anisotropic and seasonal in places
 - Potential to improve data assimilation schemes

Summary

- Data assimilation systems need to know the spatial scale of background error
- The NMC method considers forecast divergence component of background error
- Spatial scale varies over globe with longest scales near equator.
- Spatial scale increases with forecast period
 - Due to swell errors propagating and dispersing
 - Swell errors are anisotropic and seasonal
- Potential to improve data assimilation systems

