Hindcasting Wave Conditions on the North American Great Lakes

D. Scott¹, D. Schwab², C. Padala¹, and P. Zusek¹

1. Baird & Associates

Bain

2. Great Lakes Environmental Research Laboratory, NOAA

International Lake Ontario - St. Lawrence River Study

Lake Ontario

310 km long
85 km wide
Avg depth of 86 m
Max depth 244 m

Objectives:

- To develop a minimum 40-year hourly wave climate for all of Lake Ontario
- Target period: 1961-2000
- Data used as basis for subsequent numerical modeling of sediment transport and erosion studies
- Study time frame short (2 ¹/₂ months) objective modeling techniques required

Wave Data Availability

Buoy data intermittent – generally no winter data

Wind Field Development

- Atmospheric model data of insufficient resolution or duration
- Developed directly from observed winds at (primarily) land-based stations

Variation in Numbers of Meteorological Stations by Year

Initial Wind Data Adjustment

- Station selection procedures
- Quality control checks
- Adjustment to equivalent 10 m winds considering air-water temperature difference
- Initial adjustment to overwater wind speed and direction using Resio & Vincent (1976).

Final Wind Speed Adjustment

 Made land-based station observations statistically consistent with nearest buoy observations

Example for Two Octants of One Observing Station

Before Adjustment

After

Adjustment

Baird

Wind Interpolation to the Model Grid

- Natural neighbour interpolation
 - Sambridge, Braun and McQueen (1995)
 - Paper available on internet
- Methodology based on concepts developed in computational geometry (Delaunay tessellation)
- Well tested at Great Lakes Environmental Research Laboratory

Advantages of Natural Neighbour Interpolation

- The interpolation is "local"
- Original values at each data point are recovered exactly
- Derivatives are continuous
- Interpolated field is smooth
- Works extremely well for irregularly spaced data (density of observation points varies significantly)
- Readily adaptable to situations where number of reference points varies in time

Wind Field Assessment

The Wave Model

- WAVAD 2nd Generation wave model
- Undertook sensitivity tests to assess f, $\Delta \theta$, Δs resolution
- Final Selected parameters:
 - ◆ Grid Resolution: 3km
 - ◆ 22 frequencies (2.5 to 15 s)
 - ◆ 24 directional bins
 - 6 minute time step
- Daily ice field variation represented in hindcast from polygonal ice dataset

Hindcast Results

– Baird

Model Validation

Kai

- Statistical measures, quantile-quantile plots and time series comparisons
- Primary comparisons against C45135 and C45139
- Inter-annual variability

C45139

WAVE TIME SERIES

Buoy C45139 (West End of Lake)

Buoy C45135 (East End of Lake)

Measures of Hindcast Skill

Baird

Buoy	Date	Hm0 (m)			Tp (s)		
		Bias	RMSE	Correlation	Bias	RMSE	Correlation
C45139	1991-93	0.05	0.17	0.86	-0.58	1.03	0.65
C45135	1989-90	0.03	0.22	0.92	-0.65	0.95	0.8
C45135	1991-96	0.04	0.23	0.9	-0.26	0.78	0.81

Comparison of Skill: With and Without Buoys

D	045405			045400			
виоу	C45135			. C45139			
	Bias	RMSE	Correlation	Bias	RMSE	Correlation	
With Buoys	0.04	0.23	0.9	0.06	0.17	0.87	
Without Buoys	0.02	0.27	0.85	0.08	0.19	0.86	

Production Simulations

- 40 year hindcast (1961-2000)
- Required 4 days of computer time
- Data archived at 307 locations around the lake.

Maximum Hm0 (m)

Conclusions

- A reliable 40-year wave climate has been developed for Lake Ontario, forming one of the primary driving forces for the subsequent shoreline studies
- The methodologies developed are "objective", and did not require subjective tuning

Future Investigations/Improvements

- Investigation of climate change scenarios
- Improved representation of wind directional changes from land to water
- Better estimation of waves with low wave height
- More extensive comparisons (including recent directional buoy data)

