

Comparison of Gulf of Mexico Wave Information Studies 2-G Hindcast with 3-G Hindcasting

Barbara A. Tracy and Alan Cialone

WIS Gulf Hindcast

 1980-1999 Gulf wave information
 Hourly parameters available on website: <u>frf.usace.army.mil.wis</u>

Output stations near coast in 10-20m of water

Hindcast used 2-G modeling technology (WISWAVE)

Goal of Study

▲ Website has had over 10,000 hits since June 03

WIS wave information is being used by Corps of Engineers, other government agencies, and private consulting firms.

Comparison of 2-G hindcast results with the newer 3-G hindcasting results is important for WIS credibility and valuable for future hindcasting regimes.

Hindcast Details

- ▲ 1995 chosen for test year in Gulf of Mexico
- ▲ Two 3-G models (WAM and WW3) were used in test
- All grids and input wind fields were the same for all hindcasts
- Comparison of results consists of comparison statistics including circular direction statistics

Gulf Level 2 (1/4 deg) and Level 3 (1/12 deg) Grid

Hindcast Levels

- Level 1 Includes both Atlantic and Gulf in 1 – deg hindcast
- Boundary energy enters Level 2 south of Florida
- Level 2 Includes entire Gulf of Mexico with ¼ deg spacing
- Level 3 Includes coastal area of Gulf energy enters grid from central Gulf

Wave Models

$$\frac{\partial N}{\partial t} + C_g \cdot \nabla N = \sum_{i=1}^n S_i$$

N is action density

 C_g is group velocity

 S_i are source functions (wind input, dissipation, nl-wave-wave interactions, bottom effects

2-G versus 3-G Models

- 2-G Models parameterization of nl term
 3-G Models use a calculation of nl term
 All simulate directional energy matrices (freq and dir)
- ▲ All models strive to reproduce the physics of wave growth, development, dissipation, and nl interactions

3-G Model WAM

▲ WAM Cycle 4.5

- ▲ Update of WAM Cycle 4 using Fortran 90
- ▲ Komen et al., 1994; Guenther et al., 1992
- Klaus Hasselmann's DIA for nl interactions
- ▲ Wave spectra are not tied to a specific spectral shape
- ▲ Same physics used in all applications
- ▲ Sea ice and nesting options
- ▲ Used in USACE Alaska hindcasts (Jensen et al., 2002)

3-G Model WW3

- ▲ Wavewatch III Version 2.22
- Includes most recent advances in wave modeling technology
- ▲ Tolman (2002) user manual
- ▲ Marine Modeling and Analysis branch of Environmental Modeling Center at NCEP
- ▲ Dr. Tolman's Delft Univ. work
- ▲ Uses DIA for nl source term
- Default set-ups (Tolman and Chalikov, 1996)were used for test
- ▲ Different source terms available
- ▲ Options for sea ice, currents, and nesting
- ▲ Used as operational model at NOAA/NCEP

2-G Model WISWAVE

- Army Corps of Engineers model developed by Don Resio
- Uses equilibrium Jonswap and Kitaigorodskii spectral functions
- ▲ Wave theory in Resio,1981 and 1989; Resio and Perrie, 1991; Resio et al., 2001
- ▲ WISWAVE manual (Hubertz, 1992)
- ▲ Nested boundary conditions available
- ▲ Used for WIS 1980-1999 Atlantic and Gulf hindcasts for Wave Information Studies

Level 1 Wind Fields

 Includes Atlantic and eastern Gulf
 I deg spacing
 AES40 wind product (Swail, et al., 2000)
 Developed by Oceanweather for Meteorological Service of Canada
 Derived from 6-hr NCEP/NCAR reanalysis fields

Gulf Wind Fields (Level 2 and Level 3)

Oceanweather ¼ deg wind fields
 NCEP 6-hr wind fields (1.9 deg spacing
 Interpolation to 1-hr
 NCEP corrections by grid point
 Assimilation of measured wind info
 Tropical storm wind assimilation

Measurement sites

Table 1. Level 3 Measurement Sites							
NDBC	Lon.	Lat.	Dep.(m)	Months			
42019	-95.00	27.92	100	Jul-Dec			
	-96.50	27.00	120	Jan-Dec			
42040	-88.25	29.17	170	Dec			
	-94.42	29.25	15	Jan-Dec			
42016	-88.17	30.08	19	May			
42039	-86.00	28.75	300	Dec			
	-84.50	28.50	51	Jan-Dec			

Table 2. Level 2 Measurement Sites							
NDBC	Lon.	Lat.	Dep.(m)	Months			
	-89.75	26.00	3165	Jan-Dec			
42002	-93.50	26.00	3123	Jan-Dec			
42003	-86.00	26.00	3206	Jan-Dec			

Gulf of Mexico with Comparison NDBC Locations

Hurricane Opal Sept. 27- Oct. 6, 1995

*Track picture from Unisys website

Opal Level 2 Comparisons

WAM

WIS

W3

October 1995 Statistics at 42001

HS Statistics at 42001 for October 1995								
			SI					
WAM	-0.12	0.42	21	0.98	0.94			
WIS	0.32	0.41	20	0.97	0.95			
WW3	0.00	0.52	25	0.98	0.90			

TM Statistics at 42001 for October 1995								
			SI					
WAM	-0.11	0.67	10	0.99	0.85			
WIS	0.24	0.61	9	0.99	0.89			
WW3	0.56	0.77	12	0.99	0.78			

TP Statistics at 42001 for October 1995								
			SI					
WAM	-0.18	1.40	19	0.98	0.68			
WIS	0.01	1.22	16	0.99	0.76			
WW3	-0. 74	1.36	18	0.98	0.63			

October 1995 42001 (Directional statistics*)

Mean Wave Direction Statistics for Gulf Level 2 October 1995 at NDBC 42001

	\overline{x} (deg)	ƙ		
WIS	14.69	6.6	.85	668
WW3	12.52	7.4	.86	668
WAM	11.38	8.6	.88	668

* Tracy(2002) and Bowers et al.(2000)

Gulf of Mexico with Comparison NDBC Locations

Direction Statistics at 42036 for February 1995

February 1995 at 42036

Feb 1995

 Feb 4-front (winds on back WW3

 side of low)

 Feb 17-19-low wave ht

 Feb 21-low in SE Gulfdir change

HS Correlation at 42036

1995 HS Statistical Summary for Level 3 Sites

Виоу	Model	Mean Bias (m)	Mean RMS(m)	SI	SS	COR
42020	WIS	0.08	0.35	25	0.96	0.85
	WAM	-0.27	0.38	28	0.96	0.80
	WW3	-0.23	0.37	26	0.97	0. 83
42035	WIS	0.17	0.23	26.3	0.93	0.87
	WAM	-0.20	0.21	24.2	0.96	0.86
	WW3	-0.14	0.20	22.5	0.97	0.88
42036	WIS	0.10	0.30	32.4	0.95	0.90
	WAM	-0.26	0.32	34.3	0.94	0.84
	WW3	-0.16	0.27	27.5	0.97	0.90

1995 TP Statistical Summary

Buoy	Model	Mean Bias (m)	Mean RMS(m)	SI	SS	COR
42020	WIS	-0.36	1.17	18.3	0.98	0.61
	WAM	-0.19	1.31	20.6	0.97	0.54
	WW3	-0.90	1.08	16.8	0.98	0.64
42035	WIS	-0.02	1.54	28.3	0.95	0.53
	WAM	-0.01	1.54	28.4	0.94	0.47
	WW3	-1.05	1.23	22.0	0.97	0.58
42036	WIS	-0.45	1.34	24.8	0.96	0.49
	WAM	-0.02	1.53	29.3	0.97	0.56
	WW3	-0.90	1.21	22.3	0.97	0. 54

1995 TM Statistical Summary

Виоу	Model	Mean Bias (m)	Mean RMS(m)	<u>SI</u>	SS	COR
42020	WIS	-0.00	0.60	10.8	0.99	0.76
	WAM	-0.07	0.72	13.2	0.98	0.66
	WW3	-0.88	0.57	11.4	0.98	0.72
42035	WIS	0.25	0.73	15.3	0.98	0.69
	WAM	-0.06	0.80	16.3	0.98	0.56
	WW3	-0.88	0.57	11.4	0.98	0.72
42036	WIS	-0.05	0.77	16.0	0.98	0.61
	WAM	0.00	1.01	12.5	0.91	0.64
	WW3	-0.70	0.57	11.8	0.99	0.75

Summary

- ▲ All 3 models are excellent hindcasting tools
- ▲ 2G WIS results are consistent with 3G results
- ▲ 3G has slightly better directional results
- ▲ WIS over-predicts HS; 3G under-predict
- WIS captures storms and quick frontal changes in Gulf
- All models need work on wave period

Future Work

 Similar study for Atlantic
 Spectral comparisons
 New wave system diagnostics for WIS Pacific forensics (Presentation by Jeff Hanson later in conference)

