Long-term changes and potential future developments of the North Sea wave climate

Ralf Weisse and Marek Stawarz GKSS Research Center Institute for Coastal Research

> FORSCHUNGSZENTRUM In Amtielen Költz gegenentrum

North Shore, Oahu, Hawaii November 14-19, 2004

Motivation North Sea wind, wave and storm surge hindcast Potential future changes Uncertainties Summary and conclusions

Overtopping of a seawall in Lincolnshire for present and future climate conditions

Courtesy J. Sutherland

Scenario of future changes in the annual 90%-percentile of total significant wave height

From WASA (1998)

Frequently estimates are based on only one scenario and/or only one realization of that scenario

Reliable estimate of long-term variability missing

Frequently estimates are based on only one scenario and/or only one realization of that scenario

Reliable estimate of long-term variability missing

Need of ensemble simulations Need of reliable estimate of long-term natural variability

Approach for the North Sea

1. Natural variability

NCEP Global Reanalyses (210 km x 210 km) 1958 - 2002

BAW - TELEMAC 2D water level and barotropic currents 21.02.1993 12 UTC

Resolution between about 100 m and 5km

REMO wind speed and direction 21.02.1993 12 UTC

Resolution about 50 x 50 km

HIPOCAS: High-resolution hindcast of wind, waves and storm surges

WAM sig. wave height and direction 21.02.1993 12 UTC

Resolution about 5 x 5 km

		Wind [m/s]						Waves [m]						
	F	Hipocas			Observed			H	Hipocas			Observed		
	Years	x_{r}^{90}	X_r	x_{r}^{90}	x_{r}^{90}	X_r	x_{r}^{90}	x_{r}^{90}	X _r	x_{r}^{90}	x_{r}^{90}	X _r	x_{r}^{90}	
	2	24.38	25.17	25.96	24.05	25.21	26.37	7.12	7.49	7.86	6.41	6.77	7.13	
1	5	25.86	27.28	28.70	25.75	27.64	29.53	7.84	8.44	9.04	6.93	7.54	8.15	
	25	28.44	31.33	34.22	28.09	32.77	37.45	8.99	10.35	11.71	7.52	9.21	10.90	
~	2	22.50	23.16	23.82	23.16	24.03	24.90	5.89	6.15	6.41	5.52	5.84	6.16	
	5	23.76	24.82	25.88	24.33	25.94	27.55	6.34	6.83	7.32	5.89	6.46	7.03	
	25	25.67	28.00	30.33	26.43	29.75	33.07	6.90	8.20	9.50	5.99	7.88	9.77	
z	2	23.29	24.15	25.01	23.11	24.03	24.95	6.78	7.06	7.34	5.60	5.84	6.08	
<u></u>	5	24.89	26.32	27.75	24.15	25.94	27.73	7.37	7.79	8.21	5.97	6.46	6.95	
	25	26.68	30.70	34.72	26.42	29.75	33.08	8.04	9.03	10.02	6.34	7.88	9.42	

2, 5, and 25-year return values with 90% Confidence limits based on 1000 Monte Carlo simulations.

Wind speed at two buoys

Courtesy: Marcos Garcia Sotillo, 2003

Linear trend of extreme event characteristics for total sig. wave height <u>1958-2002 from HIPOCAS hindcast</u>

2. Scenarios / Ensembles

Global Climate Model (HadAM3) IPCC A2 SRES Scenario (1961-1990 / 2071-2100)

Regional Climate Models:

- CLM

- REMO

- HIRHAM

- RCAO

Storm Surge Model for the North Sea:

- TRIM 3D

Ensemble simulations within the European Project PRUDENCE

WAM

K-Modell

Ensemble simulations within the European Project PRUDENCE

Difference scenario-control (color) and mean control conditions (contours) for extreme wind speed conditions (CLM)

Avg. annual 99%-ile [m/s] Number of events above 99%-ile Number of events above 99%-ile Avg. duration above 99%-ile [hours] Number of events above 99%-ile [m/s]

200

Difference scenario-control (color) and mean control conditions (contours) for extreme wind speed conditions (CLM)

Avg. annual 99%-ile [m/s]

Difference scenario-control (color) and mean control conditions (contours) for extreme sig. wave heights (WAM)

-2.5 -2 -1.5 -1

Difference scenario-control (color) and mean control conditions (contours) for extreme sig. wave heights (WAM)

Avg. annual 99%-ile [m] 60% 558 50N 45N 45 0.6

Avg. duration above 99%-ile [hours]

Avg. intensity above 99%-ile [m]

Number of events above 99%-ile

So far only one ensemble member

So far uncertainties due to different RCMs Different GCMs?

10-yr running mean NAO index (a) ensemble means of GHG runs and (b) ensemble means of GHG+SUL runs

Summary and Conclusions

Analysis of high resolution hindcast shows increase in extreme wave events for 1958-2002

Future scenarios suggest an increase in extreme wave events south of about 55 N

Uncertainties associated with the response of extra-tropical circulation in different climate models are high

Results for future North Sea wind, wave, storm surge climate represent a consistent and plausible, but not necessarily likely future development

Projections for the future from RCM ensemble AND RCAO with ECHAM forcing:

Surge [m]

Courtesy: Katja Woth

storm surge projection, driven with ECHAM_RCAO is laying in the range of ensemble, driven with HC model

But: diff of 15 cm -> 20 %

grid cells: 10 m depth line along the coastline

Projections for the future from RCM ensemble AND RCAO with ECHAM forcing

changes in surge (99.5 %-ile)

Courtesy: Katja Woth

grid cells: 10 m depth line along the coastline