GLOBAL WAVE CLIMATE TREND

Sofia Caires

Meteorological Service of Canada and Royal Netherlands Meteorological Institute

Val Swail

Meteorological Service of Canada

Important/motivational references:

Wang, X. L. and V. R. Swail, 2001: J. of Climate, 14, 2204-2221.

Wang, X. L. and V. R. Swail, 2002: J. of Climate, 15, 1020-1035.

Wang, X. L. and V. R. Swail, 2004: In: *Atmosphere Ocean Interactions*, **2**, W. Perr (ed.)

Objectives

- ▲ Inferences about global trends in seasonal means, 90th and 99th percentiles and extremes of significant wave height (Hs) from 1958 to 2001
- ▲ Inferences about their patterns of variability
- ▲ Compare the results with those available in the literature

Plan of this talk

Description of the Hs data set used
 Description of main climate features
 Description of methodology
 Presentation of results
 Comparison with other published works
 Final remarks

C-ERA-40

Deficiencies (underestimation of high Hs peaks and inhomogeneities) *in the ECMWF ERA-40 Hs data set motivated its correction using a non-parametric method* which resulted in the C-ERA40 data set

Me me

Methodology

Trend analysis in means and percentiles: the Mann-Kendall non-parametric test was used to identify significant trends at a 5% level; the trend estimator is based on Kendall's rank correlation.

Trend analysis in the extremes: The non-homogeneous Poisson process was used to estimate trends and the likelihood ratio to infer their significance.

Variability analysis: Standard EOF analysis was used.

Non-stationary extension of
POT/GPD
Non-homogeneous Poisson process

$$I(t,x) = \frac{1}{s(t)} \left(1 + \mathbf{x}(t) \frac{x - \mathbf{m}(t)}{s(t)} \right)_{+}^{\frac{1}{\mathbf{x}(t)} - 1} \text{ for } (t,x) \in C$$

$$r(A) = \int_{A} I(t,x) dt dx$$

$$\mathbf{m}(t) = \mathbf{a} + \mathbf{b}t \quad \mathbf{s}(t) = \mathbf{s} \quad \mathbf{x}(t) = \mathbf{x}$$

m-year return value

$$\int_{0}^{m} \left(1 + \boldsymbol{x}(t) \frac{\boldsymbol{x}_{m} - \boldsymbol{m}(t)}{\boldsymbol{s}(t)}\right)^{-\frac{1}{\boldsymbol{x}(t)}} dt = 1$$

Maximum likelihood estimation

$$L = \exp\left\{-\int_C \lambda(t, x) dt dx\right\} \prod_{i,j} \lambda(t_{i,j}, x(i, j)).$$

Trends in the literature

Study	Location	Variable	Period	Trend (cm/yr)
Carter and Draper (1998)	Seven Stones light vessel	Annual means	1962-1985	3.4
Bacon and Carter (1991)				2.2
Wang and Swail (2002)	Grid points around SSLV			0.05-0.21*
C-ERA40	Grid points around SSLV			-0.04-0.18*
Bouws et al. (1996)	Box 1 (50°-55°N, 50°-40°W)	Annual 50th percentiles	1961-1987	2.3
Wang and Swail (2002)				-1.0-0.1*
C-ERA40				-0.3-0.4*
Bouws et al. (1996)		Annual 50th percentiles	1961-1987	2.7
Günther et al. (1998)	Box 2 (50°-55°N, 20°-10°W)			1.0
Wang and Swail (2002)				-1.0-0.1*
C-ERA40				-0.3-0.6*

Study	Location	Variable	Period	Trend (c <mark>m/yr)</mark>
Günther et al. (1998)			1955-1994	0.25-0.75
Wang and Swail (2002)	Northeast Atlantic	Annual means	1958-1997	0.5-2.5
C-ERA40			1958-1997	0.6-1
Günther et al. (1998)			1955-1994	2-3
Wang and Swail (2002)	Northeast Atlantic	Annual 90 th percentiles	1958-1997	1-3
C-ERA40			1958-1997	2-3
Günther et al. (1998)			1955-1994	3-4
Wang and Swail (2002)	Northeast Atlantic	Annual 99 th percentiles	1958-1997	2-6
C-ERA40			1958-1997	2-4
Günther et al. (1998)			1955-1994	7-10
Wang and Swail (2002)	Northeast Atlantic	Annual maxima	1958-1997	4-7.6
C-ERA40			1958-1997	4-6.7
Sterl et al (1998)	NT 41 A 41 41	Toursours un com	1979-1993	12
C-ERA40		January mean		15
Sterl et al (1998)	South Africa	Iulu maan	1979-1993	7
C-ERA40		July mean		7.4
Gower et al. (2002)		Monthly mean		2.1
Allan and Komar (2000)	NDBC-NOAA Buoy 46005	Annual mean		2.7
Anderson et al. (2001)		3 hourly		1
C-ERA40		Annual mean		1 20002

The coefficients are highly correlated with the global mean

Final remarks

•Ss high trends in the CNP and the NEA (winter and fall) and SO (all year round).

•Trends of up to 2.6, 5.1, 8.6 are to be expected in the means, 90th and 99th percentiles, respectively.

•Trends of up to 8 cm/yr in the scale par., % of global oceans where trends are ss varies seasonally between 36 and 59%.

•Variability modes correlated to known climate indexes.

•Trend estimates have magnitudes lower than those given by studies based on observations. The spatial structure of the trends is very similar to those of estimates based on wave model results.

Caveats: Data only for deep waters and tropical cyclones are not resolved.

Global wave climate atlas based on ERA-40/C-ERA-40 wave and wind data is available at www.knmi.nl/waveatlas

