Comparisons of Infrared Satellite Derived SSTs with in-situ and Microwave Derived SSTs

Jorge Vazquez **Edward M. Armstrong NASA/JPL/Caltech PO.DAAC** in collaboration with Andy Harris/NOAA Presentation made at the second **CLIMAR Meeting Brussels, Belgium November** 2003

Outline of Talk

- Comparisons of the NOAA/NASA AVHRR Pathfinder 9km SSTs (MPFSST) and SSTs from the Along Track Scanning Radiometer (ATSR-2, ASST2) with in-situ data from the World Ocean Database version 02. Comparison done with different Pathfinder SST flags
- Correlations of differences between the MPFSST, ASST2 and TMI microwave derived SSTS and water vapor, aerosols, and wind speed from SSMI

Day (MPFSST flag7-WOD) RMS

ATSR2- WOD02 (degrees Celsius) Mean = -0.31 ± 0.84 (Daytime) Mean= $-.02 \pm 0.77$ (Nighttime)

MPFSST Flag 4 - WOD02 Mean = -0.12 ± 0.86 (Daytime) Mean= -0.24 ± 0.81 (Nighttime)

MPFSST Flag7 - WOD Mean = -0.04 ± 0.79 (Daytime) Mean= -0.17 ± 0.76 (Nighttime)

Correlations

 Multiple Correlation between MPFSST-TMI and ASST2-TMI vs. aerosols, winds, and vapor

 Partial Correlations between MPFSST-TMI and ASST2-TMI vs. aerosols MPFSST-TMI and ASST2-TMI vs. winds MPFSST-TMI and ASST2-TMI vs. vapor

MPFSST-TMI Seasonal

Day

Day

Mean Day Summer MPFSST-TMI

Winter

Spring

 $\begin{array}{c} 45 \\ -45 \\ -45 \\ -10 \\$

Summer

Fall

Night

Winter

Spring

Summer

Fall

ASST2-TMI Seasonal

Day

Day

Night

Summer

Fall

Night

0.00

Degrees C

-1.0

1.00

Winter

Winter

Spring

Spring

Summer

Fall

MPFSST-TMI Seasonal Latitude Bands

MPFSST-TMI Day

ASST2-TMI Day

ASST2-TMI Day

Conclusions

Use of higher Pathfinder flags can significantly reduce biases

Comparisons with the WOD02 confirm that the ATSR2 SSTs are performing better during times of high aerosols

JPL

Future work needs to be done to fully understand the implications of correlations of winds and water vapor with MPFSST and ATSR2-TMI differences