

TMI and AMSR-E Microwave SSTs

Chelle Gentemann, Frank Wentz, & Peter Ashcroft Gentemann@remss.com

www.remss.com

- ► TMI/AMSR-E
- MW SST algorithm development
 - Validation Results
 - Sensor Issues
 - Useful for Climate research

GODAE High Resolution Sea Surface Temperature Pilot Project

Outline of Talk

Current status of TMI & AMSR-E SSTs

Sensor description

RSS MW SST algorithm

- Validation Results
- Calibration problems

•Useful for Climate research

Remote Sensing Systems www.remss.com

TRMM Orbit

50 km footprint
Swath width: 760 km
5 channels: 10.7, 19.4, 21.3, 37, 85.5 GHz

TRMM SST, November 23, 2000

>35° inclination.
> Altitude of 350km.
> Full coverage in ~2 days.

TMI/AMSR-E

Suite of Ocean Products

Remote Sensing Systems

www.remss.com

Algorithm Derivation

Environmental Scenes 42,195 Radiosondes 5 Cloud Models SST Randomly Varied ±5°C about climatology Wind Speed Randomly Varied from 0 to 25m/s Wind Direction Randomly Varied from 0 to 360°

TMI, AMSR-E, AATSR coefficients calculated by regression to RTM generated TBs.

AVHRR SST monthly coefficients calculated by blind regressions to insitu (drifters/buoys/ship) measurements.

TMI SST Validation

		Orbital Collocations			
	collocations	Mean Dif.	STD		
TAO	28176	-0.08	0.57		
PIRATA	4913	0.03	0.55		
NDBC	19493	0.28	0.92		

Remote Sensing Systems www.remss.com

Near real time AMSR-E SST Validation Using Buoys & Ship Measurements from NRL-Monterey

- Updated twice daily
- Figures show last 50 days bias/std and locations of previous day collocations
- Complete collocated dataset available

Land contamination in TMI & AMSR-E

• Microwave observations within 50-100 Km from land affected by warm emission by land $(1^{\circ}C)$

•WARM bias of coastal SSTs

Remote Sensing Systems www.remss.com

TMI Post-orbital Boost Roll Error

- On August 25, 2001 TRMM finished a maneuver to boost the altitude from 350 to 402 km.
- TRMM's attitude control system (ACS) controls yaw/pitch/roll based on onboard attitude estimates. Preboost ACS utilized an Earth horizon sensor for roll and pitch.
- The altitude increase resulted in the loss of the Earth horizon sensor, the ACS backup system uses a 'Kalman filter' with weighted input from the gyros, sun sensor, magnetometer.
- Post-boost errors in the PR rain and TMI SST were immediately apparent. Independent estimates of errors in roll from GSFC PR team (Red) and RSS TMI SST team (Black) are in close agreement.
- Post-boost roll errors peaked at 0.5 degrees at the end of September -- these errors translate to 3 C errors in SST before correction. Using the RSS calibration developed, SST errors due to roll were reduced to < 0.2 C.

Before and After SST Retrievals

9/28/2001: TMI V02

9/28/2001: TMI V03

Global Difference : June 2001 – October 2003

AMSR-E Day - Reynolds AMSR-E Night - Reynolds

Global Difference: June 2001 – October 2003

AMSR-E Day - RTG SST AMSR-E Night - RTG SST

Better Coverage: IR/MW retrievals

NPOESS requirement: 6-hour revisit

1998: 2-day averages, TMI retrievals

1998: 2-day averages, Pathfinder retrievals

Optimally Interpolated TMI & AMSR-E SSTs

Conclusions:

- AMSR-E and TMI available in NRT
- Significant improvement in accuracy and coverage of polar SSTs
- Daily, high-resolution OI SSTs for TMI, AMSR-E, and TMI+AMSR-E available as research product in NRT
- www.remss.com
- STD 0.67 and 0.57 (AMSR-E and TMI)

Remote Sensing Systems

www.remss.com

The Next 20 Years

 Mission/Sensor	Dates	Comments
ADEOS-2 AMSR + SeaWinds	2002-2003	Radiometer and Scatterometer Died: October 25, 2003
AQUA AMSR-E	2002-2005	Complements ADEOS-2 Coverage
WindSat (Navy)	2002-2005	Two-Look Polarimetric Radiometer
GCOM B-1 AMSR + α -SCAT	2006-2010 (?)	Radiometer and Scatterometer
NPOESS CMIS	2009 -2020	Single-Look Polarimetric Radiometer (?)

Improved Performance 6.9, 10.7, 19, 23, 37, 90 GHz 2 meter antenna 50 km resolution, 1600 km swath Better Pre-launch Calibration Supplementary information on wind SST Accuracy 0.2 C for 3-day averages at 50-km resolutionSensing Systems

www.remss.com

	Storm	Storm	Forecast	Date	Time	Latitude	Longitude	Wind	Pressure	TMI SST
	Туре	Name			(UT)	(deg)	(deg)	(m/s)	(mb)	(C)
	STO	OLIVIA	. 00 hr	10/ 4/2000	21:00	16.00	253.90	28.32	994	27.25
	???	OLIVIA	. 12 hr	10/ 5/2000	6:00	16.10	253.30	28.32	???	27.55
	???	OLIVIA	. 24 hr	10/ 5/2000	18:00	16.30	252.50	30.90	???	27.87
	???	OLIVIA	. 36 hr	10/ 6/2000	6:00	16.50	251.50	30.90	???	28.08
	???	OLIVIA	. 48 hr	10/ 6/2000	18:00	16.70	250.50	33.48	???	28.05
	???	OLIVIA	. 72 hr	10/ 7/2000	18:00	17.00	248.50	26.27	???	27.50
- 1										

Tropical Storm Olivia Oct 3 13Z QSCAT rev 6725

Remote Sensing Systems www.remss.com

♦

Effect of wind direction on SST retrievals. Reynolds SST, which should have no wind direction dependence, is subtracted from TMI SST. No correction for wind direction has been applied to the TMI SST. This difference is binned according to wind speed and is plotted versus the relative wind direction, which is the satellite's azimuthal viewing angle minus wind direction (from NCEP). The colored curves show the results for each wind speed bin from 0 to 15 m/s, in 1 m/s steps. At low wind speeds (< 5m/s) there is no appreciable error. Above 5 m/s the peak-to-peak amplitude of the error increases to a maximum of 4°C when winds are 15 m/s.

Remote Sensing Systems

Wind effects on TMI SSTs

Ocean MW emissivity changes at high winds due to increased sea roughness Wind correction needed for MW SST retrievals: no Bias but higher StDev.

Effective Temperature of Hot Load (Versus Latitude and Month)

