Combined estimates of uncertainties in gridded marine temperature fields due to measurement errors and undersampling of variability

Philip Brohan, Nick Rayner, Michal Vanicek, Simon Tett and Liz Kent

CLIMAR-II workshop, 19-21st November, 2003

Outline

- Illustration of the issue
- Modelling the effect: splitting grid box variability into "real" and "spurious" parts
- Resultant fields and time series of sampling/measurement error

Sampling and measurement error

- Gridded observational data fields contain several sources of uncertainty. Two such are:
 - measurement error (the inaccuracy of an individual measurement) and
 - sampling error (the inability of a finite number of observations to capture the full variability of the quantity measured over the area of a grid-box).
- The error in an average of a finite number of observations of a

voriable is a combination of these

Number of observations is variable

total number in monthly HadSST2, 1840 - August 2003

This leads to heteroskedasticity in a monthly bias-corrected grid box SST time series (e.g. for box [30-35W,0-5S])

This leads to heteroskedasticity in a monthly grid box SST time series

(e.g. for box [30-35W,0-5S])

Moving 6-yr average removed

It is easy to see the correlation between variability and number of observations (e.g. for box [30-35W,0-5S])

It is easy to see the correlation between variability and number of observations (e.g. for box [30-35W,0-5S])

Fitting a relationship

- How exactly does standard deviation (s.d.) vary with number of obs?
- Jones et al (1997), Yevjevich (1972) and Kagan (1966) relate the s.d. of a multi-site mean time series, V, to the average s.d. of the constituent observations via their number and their mean correlation: $\frac{1972}{n}$

We fit this relationship to the curve at each grid box

Fitting the formula to our test grid box [30-35W,0-5S]

 $v_i^2 = 1.30$

r=0.095

The fit is clearer if all data for the globe are used

 $v_i^2 = 1.80$

r=0.11

Partitioning the variance

- The inter-month variance in each site time series comprises two parts:
 - variance common to the whole grid box, s²
 - sub-grid-scale variability/measurement $\frac{s_e^2}{v_i^2}$ rors at the site, $\frac{m_i^2}{m_i^2}$
- Using $\sqrt{m_i^2}$ and , we solve for s and
- Here would be the rms error in the grid box average incurred if only one

Grid-box-wide inter-month SST variability, s standard deviation (°C)

RMS sampling+measurement error if only one observation in monthly average (°C)

Sampling + measurement errors for each month

 Combining the rms error for one observation at each grid box with the number of observations used in each monthly grid-box average gives the combined uncertainty (1 s.e.) in the gridded average from measurement error and undersampling

HadSST2 global rms sampling + measurement error (°C) 1840 - August 2003

HadNAT2 global rms sampling + measurement error (°C) 1840 - August 2003

Summary

- Used relationship between detrended monthly gridded variance and the number and inter-correlation of constituent observations to infer "true" and "spurious" parts of grid box variance
- Dramatic reduction in this uncertainty is seen after the start of the coordination of the VOS following the 1853 Brussels Maritime Conference
- How does this relate to other uncertainties in the data? See next talk.

