Seventh meeting of the WMO-IUGG Volcanic Ash Scientific Advisory Group (VASAG/7)

Outcomes of ICAO METP WG-MOG/5 (JAVW) and WG-MISD (VASD) of relevance to the VASAG

21 to 23 August 2017 USGS, Vancouver, WA, United States

WMO OMM

World Meteorological Organization Organisation météorologique mondiale Greg Brock, Scientific Officer AEM Division, WMO

A reminder of these ICAO groups...

METP WG-MOG (IAVW)

- METP: Meteorology Panel
 - WG-MOG: Working Group on Meteorological Operations Groups
 - IAVW: Work stream on the international airways volcano watch

METP WG-MISD (VASD)

- METP: Meteorology Panel
 - WG-MISD: Working Group on Meteorological Information and Service Development
 - VASD: Work stream on volcanic ash sulphur dioxide

WG-MOG and WG-MISD are two out of the five working groups of the METP

ICAO METP WG-MOG/5 (IAVW) and WG-MISD/3 (VASD)

• Held 12 to 14 June 2017 @ JMA, Tokyo

- 2.5 days MOG, 0.5 days MISD

- Representation from all 9 VAAC Provider States
 - Plus China, ICAO, WMO, IATA and Rolls-Royce

 Accepted all relevant outcomes of preceding WMO VAAC BP/5 (held 7 to 9 June 2017)

Reference documentation

Final reports

- WG-MOG/5 (IAVW)
 - <u>Link</u>
 (open access)
- WG-MISD/3 (VASD)
 - <u>Link</u>
 (requires ICAO Portal credentials)

Study notes

- Aircraft encounter information [SN/13 link] (open access)
- Aviation colour codes [SN/12 link] (open access)
- Quantitative VA contamination information [SN/04 link] (open access)
- SO₂ [SN/2401 <u>link</u> and SN/2402 <u>link</u>] (requires ICAO Portal credentials)

Outcomes

WG-MOG/5 (IAVW)

- 15 decisions and actions agreed on:
 - Terms of reference (minor update)
 - VAAC KPIs implementation
 - Discontinuation of T+0 confidence trial
 - Discontinuation of T+24 VAG trial
 - Annex 3 model charts update (projections)
 - 'No ash' reporting processes
 - Re-suspended VA qualifier in VAA/VAG
 - Aircraft encounter information (AA 5/7)
 - Aviation colour codes (AA 5/10)
 - <u>Quantitative VA contamination</u> information and forecasts (AA 5/12)
 - IAVW Roadmap and ConOps progression
 - IAVW Handbook update (backup info)
 - CTBTO re-engagement (infrasound issue)
 - Consolidation of VAAC management

reports

WG-MISD/3 (VASD)

- 3 decisions and actions agreed on:
 - <u>VA SO2 'state of science' review (AA 3/1)</u>
 - Job card update
 - Work plan update

Items specifically requiring WMO-IUGG VASAG attention and follow-up are highlighted in <u>blue</u>

Aircraft encounter information

• Doc 9691 Appendix F

MO OMM

- static rather than dynamic
- Database of encounters up to August 2008
 - But, additional DLR and USGS investigations available through to 2016

<u>VASAG action:</u> Lead a review of the findings with aim to collaboratively update Doc 9691

- Proposed new VA encounter severity index
 - Includes consideration of the effect of volcanic clouds on aircraft occupants

VASAG action: Lead a review of the severity index in view of its potential inclusion in Doc 9691

DEADLINE: Next WG-MOG (IAVW) meeting - Q4 2018 tbc

Aviation colour codes

- Proposal to amend Annex 3:
 - Appendix 2, Table A2-1 to remove aviation colour codes from the VAA/VAG
 - Chapter 4, §4.1, Note 2 to elevate the status of the VONA to a recommended practice (plus supporting IWXXM schema considerations)
- Plus development of supporting guidance

<u>VASAG action:</u> Assist activity co-leads (Don and Patrick) and others in development of a proposed amendment to Annex 3 and the supporting guidance

Quantitative VA contamination info and forecasts

- Scientific and technical advancement
 - multi-spectral techniques, algorithms, etc.
- Rolls-Royce position
 - "Engines exposed to a cumulative volcanic ash dose of 14.4 g s/m³ or lower, between actual ash concentrations of 0.2 to 4 mg/m³ should not lead to a significant reduction in engine related flight safety margins (e.g. 2 hours at 2 mg/m³)

WG-MOG/5 Action Agreed 5/12

Quantitative VA contamination info and forecasts (continued)

- The future of the IAVW...
 - 'Richer' data requirements
 - Associated with ICAO's Global Air Navigation Plan (GANP)/aviation system block upgrades (ASBU) methodology
 - Quantitative data
 - Ash concentrations forecasts
 - Forecast confidence level assessments
 - Extended forecast period

<u>VASAG action:</u> Lead a further 'state of science' review related to the global development and use of quantitative VA contamination information and forecasts

MO OMM

DEADLINE: Next WG-MOG (IAVW) meeting – Q4 2018 tbc

VA SO₂ 'state of science' review

- Most but not all VAACs currently have SO₂ detection, monitoring and/or prediction capabilities
 - Where capability does exist, it's mainly in the research/non-operational area
- Past 25 years, several events/encounters:
 - Hot corrosion in engines, window crazing, etc.
 - Negative impact on aircraft occupant health
- WHO maximum exposure guidelines
 - Not all States support
 - Intended for ground-level exposure not at altitude or within the aircraft

VA SO₂ 'state of science' review (continued)

- US (FAA Civil Aerospace Medical Institute) recommendations
 - Apply only at surface-based atmospheric pressure levels
 - No studies within aircraft at altitude
 - Aircraft environmental control system design (e.g. gaseous filtration) varies can affect levels
- Studies on air cabin quality e.g. EASA
- Further studies and tests should be pursued

<u>VASAG action</u>: Assist activity lead (Tammy) and others in a further review of the 'state of science' related to VA SO2 that poses a threat to aircraft occupants as well as investigate possible impacts to the aircraft

WEATHER CLIMATE WATER TEMPS CLIMAT EAU

Thank you Merci

WMO OMM

World Meteorological Organization Organisation météorologique mondiale