The Global Eruption Source Parameter Database

Where do we go from here?

D. Schneider*

S. Engwell¹, L. Mastin², S. Barsotti³, A. Neri⁴, A. Folch⁵, B. Stunder⁶ & C. Witham⁷

*U.S. Geological Survey, Alaska Volcano Observatory, Anchorage, Alaska, USA

¹British Geological Survey, Edinburgh, U.K., ²U.S. Geological Survey, Cascades Volcano Observatory, Vancouver, Washington, USA, ³Icelandic Meteorological Office, Rekjavik, Iceland, ⁴Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Pisa, Italy, ⁵Barcelona Supercomputing Center, Barcelona, Spain, ⁶National Oceanic and Atmospheric Administration, College Park, Maryland, USA, ⁷U.K. Meteorological Office, Exeter, U.K.

Eruption Source Parameters

- Prior to and during the initial stages of an eruption, commonly not enough observations to define eruption source parameters (ESPs), for example plume height
- Accurate quantification of ESPs crucial for reliable application of ash dispersion models

Eyjafjallajökull eruption, 2010. Photo credits: Thorvaldur Karl Helgason (CC BY-NC 2.0)

Database History

2004:

Limitations in accuracy of ash-cloud model forecasts associated with uncertainties in ESP noted during the 1st IAVWOPSG meeting

2005:

At the 2nd IAVWOPSG meeting, the US member tasked to devote a year to improve quality of ESP used in VAAC forecast models

2007:

USGS organised a workshop on ESPs at the Cascade Volcano Observatory, and a dedicated session organised at AGU

2009:

Database published to provide source parameters for simulations in cases where no observations available

The Database 1

Туре	Magma type	Historical eruption characteristics
M0	Basalt or other	Insufficient historical
	mafic	data to characterize
M1		H≤5 km or VEI≤2
M2		H=5-8 km or VEI=3
M3		>8 km or VEI≥4
S0	Andesite, dacite,	Insufficient historical
	rhyolite, or other	data to characterize
S1	explosive	H≤6 km or VEI≤2
S2	composition	H=6-12 km or VEI=3
S3		H≥12 km or VEI ≥ 4
S8		Major pyroclastic flows,
		with an elutriated column
		rising primarily above the flows.
S9		Active lava dome is
		present
U0	All magma types	Submarine vent with a
		water depth ≥50 m

1. Volcanoes characterised in terms of type and historical activity, with 9 eruption types defined based on magma type and eruption size

Eruption type	Example	H, km	D	M	V	<i>m</i> 63
	(Date as M/D/Y)	above vent	hr	kg/s	km³	
Mafic, standard (M0)	Cerro Negro, Nicaragua, 4/9-13/1992	7	60	1×10 ⁵	0.01	0.05
Small (M1)	Mount Etna, Italy, 7/19-24/2001	2	100	5×10 ³	0.001	0.02
Medium (M2)	Cerro Negro, Nicaragua, 4/9-13/1992	7	60	1×10 ⁵	0.01	0.05
Large (M3)	Fuego, Guatemala, 10/14/1974	10	5	1×10 ⁶	0.17	0.1
Silicic, standard (S0)	Mount Spurr, USA, 8/18/1992	11	3	4×10 ⁶	0.015	0.4
Small (S1)	Mount Ruapehu, New Zealand,	5	12	2×10 ⁵	0.003	0.1
	6/17/1996					
Medium (S2)	Mount Spurr, USA, 8/18/1992	11	3	4×10^{6}	0.015	0.4
Large (S3)	Mount St. Helens, USA, 5/18/1980	15	8	1×10 ⁷	0.15	0.5
Co-ignimbrite	Mount St. Helens, USA, 5/18/1980	25	0.5	1×108	0.05	0.5
cloud (S8)	(pre-9 AM)					
Brief (S9)	Soufrière Hills, Montserrat	10	0.01	3×10^{6}	0.0003	0.6
	(composite)					
Submarine (U0)	None	0				

2. For each eruption type, key inputs for tephra dispersal models identified based on well known examples

The Database 2

NUMBER	NAME	LOCATION	STATUS	LATITUDE	NS	VF	LONGITUDE	EW	ELEV	TYPE	TIME FRAME	ERUPTION TYPE
0201-041	Dallol	Ethiopia	Historical	14.242	N	VF	40.30	E	-48	Explosion craters	D2	S0
0201-041	Alid	Ethiopia	Holocene	14.88	N		39.92	E	904	Stratovolcano	U	S0
		•										
0201-05=	Gada Ale	Ethiopia	Holocene	13.975	N		40.408	E	287	Stratovolcano	U	M0
0201-06=	Alu	Ethiopia	Holocene	13.825	N		40.508	E	429	Fissure vents	U	M0
0201-071	Borale Ale	Ethiopia	Holocene	13.725	N		40.60	E	668	Stratovolcano	U	M0
0201-07=	Dalaffilla	Ethiopia	Historical	13.792	N		40.55	Е	613	Stratovolcano	D1	M0
0201-08=	Erta Ale	Ethiopia	Historical	13.60	N		40.67	Е	613	Shield volcano	D1	M1
0201-091	Hayli Gubbi	Ethiopia	Holocene	13.50	N		40.72	Ε	521	Shield volcano	U	M0
0201-09=	Ale Bagu	Ethiopia	Holocene	13.52	N		40.63	Ε	1031	Stratovolcano	U	M0
0201-101	Nabro	Ethiopia	Holocene?	13.37	N		41.70	Ε	2218	Stratovolcano	?	S0
0201-102	Mallahle	Ethiopia	Holocene?	13.27	N		41.65	Е	1875	Stratovolcano	?	S0
0201-103	Sork Ale	Ethiopia	Holocene?	13.18	N		41.725	Ε	1611	Stratovolcano	?	M0
0201-104	Asavyo	Ethiopia	Holocene	13.07	N		41.60	Ε	1200	Shield volcano	U	M0
0201-105	Mat Ala	Ethiopia	Holocene	13.10	N		41.15	Ε	523	Shield volcano	U	M0
0201-106	Tat Ali	Ethiopia	Holocene	13.28	N		41.07	Ε	700	Shield volcano	U	M0
0201-107	Borawli	Ethiopia	Holocene	13.30	N		40.98	Ε	812	Stratovolcano	U	M0
0201-10=	Dubbi	Ethiopia	Historical	13.58	N		41.808	Е	1625	Stratovolcano	D3	M0
0201-111	Ma Alalta	Ethiopia	Holocene	13.02	N		40.20	Ε	1815	Stratovolcano	U	S0
0201-112	Alayta	Ethiopia	Historical	12.88	N		40.57	Е	1501	Shield volcano	D2	M0
0201-113	Dabbahu	Ethiopia	Historical	12.60	N		40.48	Е	1442	Stratovolcano	D1	S0
0201-114	Dabbayra	Ethiopia	Holocene	12.38	N		40.07	Е	1302	Shield volcano	U	MO
0201-115	Manda Hararo	Ethiopia	Historical	12.17	N		40.82	Ε	600	Shield volcanoes	D1	M0
0201-116	Groppo	Ethiopia	Holocene	11.73	N		40.25	Е	930	Stratovolcano	U	S0
0201-11=	Afderà	Ethiopia	Holocene?	13.08	N		40.85	Е	1295	Stratovolcano	?	S0

Characterisation of some example volcanoes Grey indicates volcanoes with historical eruptions

The Database 3

Current parameters for each volcano:

- Plume height

- Eruption duration
- Erupted volume
- Mass fraction of fine ash

Can be updated by observations during an eruption

Defined based on previous eruptions at a volcano

Potential Improvements

Database modification:

- Greater number of input parameters, e.g. total grainsize distribution
- Options for multiple scenarios or probability distributions for inputs at a given volcano
- Make source parameters customisable such that they are tailored to specific volcanoes

Accessibility:

- Post database online
- Allow qualified users to update database
- Develop streamlined integration with operational models

Ash3d Job

Times									
Windfile:	2016-02-10	00:00:00 UTC	6						
Local:	2016-02-10 09:05:17 UTC								
Name:	Corbetti Test								
13/45			6						
Automatic Run:	(when ne	w windfile arrives)	6						
Run Type:	Airborne Ash ▼								
When Complete:	Do not send email ▼								
Note: Model runs gene	erally complet	e in about 10 minutes.							
Use Advanced Options:									
Volcano/Site:	Corbetti Calde	Corbetti Caldera							
3/45			6						
	Latitude: 7.1								
	Longitude: 3 Elevation: 2,								
Eruption Start Time:	Now	▼	6						
Simulation Duration:		Between 3 and 48 hours	6						
	Default simu	lation duration for this volcan	o is						
	24 hours (ap	ply).							
Eruption Duration:		At Most 24 Hours	6						
	Default eruption duration for this volcano is 3 hours (apply).								
Plume Height:	0	km ASL	6						
	Default plume height for this volcano is 13.32								
	km (apply).								
Erupted Volume:		Km ³	6						
	Default erupted volume for this volcano is 0.015 Km ³ (apply).								
		ecified: NaN Km ³ e ash fraction = 5%							

Integration with operational models

Enables fast application of models using default parameters

Feedback

- Keen to gather feedback from VAACs on:
 - Is the database currently being used? How and by whom? And if not, where is ESP information gathered from?
 - In examples when there are no observations, how is plume height estimated?
 - Are there ways in which the database can be made more accessible?
 - What other inputs would could be incorporated?