Enhanced Regional Hazardous Weather Information Services

Sharon Lau
Hong Kong, China

CAeM-16 23 to 27 July 2018 Exeter, United Kingdom

World Meteorological Organization
Organisation météorologique mondiale

Existing Enroute Information Service

SIGMET

- Unavailability of SIGMET
- Text-based → not easy to interpret automatically
- FIR-based →
 - For region with small FIRs, one weather phenomenon might involve a number of SIGMETs
 - Discontinuity across FIR boundaries
 - Different local practice adopted in SIGMET issuance
- SIGMET area too big

User feedback

Unavailability of SIGMET

Forecaster's view

But when we take out the satellite image...

What pilots get

How misleading to the big picture these SIGMETs could be

SIGMET area too! Big!

How to use the SIGMET to avoid the hazardous wx?

User feedback

 Range of differences in intensity, coverage, forecast position, development and timings

Inconsistencies of SIGMET

METDIV-14/CAeM-15

- Recommendation 2/9 Implementation of a regional advisory system for select en-route hazardous meteorological conditions
- Meteorology Panel (METP) Regional Hazardous
 Weather Advisory (RHWAC) workstream responsible
 for the job card

Near-term solution

- Encourage SIGMET coordination to address consistency issue
- Additional guidance information on SIGMET coordination in Doc 8896
 - WMO Pilot Project on SIGMET Coordination (Indonesia, Malaysia and Singapore) [since operational]
 - Collaborative SIGMET Issuance (Japan, Lao PDR, Myanmar, Philippines, Thailand and Viet Nam)
 - SIGMET Coordination Trial (Hong Kong, Guangzhou, Sanya, Vietnam< Chengdu)
 - SIGMET Coordination in North Pacific (Japan, Philippines and US)
 - METAlliance SIGMET Coordination Project
 - Russian Federation SIGMET Coordination Project (Russia, Azerbaijan, Georgia, Kazakhstan, Kyrgyzstan, Tajikistan and Uzbekistan)
 - Balcans (Bosnia-Herzegovina, Croatia, Serbia and Slovenia)
 - DACH (Germany Austria and Switzerland)
 - NAMCON (Denmark, Estonia, Finland, Iceland, Latvia and Norway)

Collaborative SIGMET Issuance

- Collaborative SIGMET Issuance Project (Since 2015)
 - Multi-lateral collaborative efforts for better harmonized and phenomenon-based en-route hazardous weather information
 - Project members : Japan (JMA), Lao PDR (LDMH), Myanmar (MDMH),
 Philippines (PAGASA), Thailand (TMD), Vietnam (VATM)
 - After completion of 4-times demonstrations,
 the operational phase has started since 9 April, 2018

SIGMET Coordination in SE Asia

- Singapore, Kuala Lumpur, Kota Kinabalu, Jakarta, Ujung Pandang
- Hong Kong, Guangzhou, Sanya, Guangxi, Hanoi, Ho
 Chi Ming, with Cambodia joining soon

SIGMET Coordination

- Existing SIGMET issuance principles STAYS
 - Efficient, not delay SIGMET issuance
 - In line with Annex 3
 - State remains sovereign

Lessons learnt

- Formalizing the arrangement with detail procedures
- Common situation awareness and interface

Lesson Learnt

Forecast tools – best practice

- Harmonization of issuance criteria
 - No clear requirement in Annex 3 on dimension of the phenomenon → subjectivity and local practice
 - RHWAC survey on future en-route hazardous weather information

Long-term solution

- Future En-route Hazardous Information
 - Harmonized, phenomenon-based
 - Aligned and integrated into the future ATM system as part of the Global Air Navigation Plan (GANP)
 - In line with Aviation System Block Upgrades (ASBU) methodology and timeline
 - Integrated in the SWIM environment for further processing by automatic decision support tools
 - Being developed by RHWAC workstream under ICAO METP

Regional Enroute Hazardous Weather - Process

- User needs analysis
 - Survey issued to IATA, IFALPA and IFATCA

- Requirement Specification
 - Functional requirements
 - Performance requirements
- System for service provision
 - Continuing role of MWOs
 - Coordination between MWOs and regional service providers and between regional service providers
 - Optimal number of regional service providers

Pilot's expectation

Pilot's expectation

 With widespread deployment of EFB, pilots' wish for 3D view may soon materialize

MMO OMM

Thank you Merci

World Meteorological Organization Organisation météorologique mondiale

Very Initial Survey Results (CB)

- Want coverage at multiple levels
- Dimension roughly
 0.5x0.5 deg or 1x1 deg
- Separation of 0.5x0.5 deg
- Information about lightning

Himawari-8 satellite picture with significant convection marked in red. Overlaid on top are the lightning in the past 10 minutes in yellow. The grid is 1deg x 1 deg.

- 9. For oceanic air space, what would be the minimum size of the convection area that you would consider significant and would want to receive information on? Eg. would cause a significant diversion to avoid?
- $^{ extstyle O}$ 30 x 30 nm, i.e. for convection size of around 1/4 the size of green polygons above
- 0 60 x 60 nm, i.e. roughly the size of the green polygons above
- O 90 x 90 nm, i.e. roughly or slightly larger than the green polygons above
- O 120 x 120 nm, i.e. roughly the size of the blue polygon above
- O Other (please specify)

10. For oceanic air space, what would be the minimum separation distance between two convective systems required to safely navigate between the two

Very Initial Survey Results (CAT)

- Wants informed starting at MOD turb
- Reports of relevance within 1 deg and 2000-5000 ft in past 2 hr
- Resolution 1x1 deg, vertical 2000 ft

