

Meteorology in Collaborative Decision Making at Paris Charles de Gaulle Airport

July 23rd, 2018
WMO COMMISSION FOR AERONAUTICAL METEOROLOGY
16th SESSION – TECHNICAL CONFERENCE
Exeter, UK

Emmanuel LEFEVRE Groupe ADP Airside Operations Paris-CDG Airport

CDM Implementation

MET@CDM

Gains

Paris-CDG CDM Cell

CDG Airport

ATC Infrastructure

1 approach room, 3 control towers,

2 apron control centers

Airport Infrastructure Information

- Surface: 3,200 ha
- 2 pairs of runways dedicated mode DEP/ARR (scheduled capacity: 120 mvts/h)
 - 110 km Taxiways
 - 8 ILS CAT.III
 - 9 passenger terminals
 - 2 cargo hubs

Statistics 2017

- 69.5 M passengers
- 475,000 movements
- 1,400 mvts per day
- RWY throughput: ARR 73 / DEP 76
 - 146 Airlines

Weather environment

- Low Visibility Procedures (LVP)
 - Snow

Winter 17/18 : 19 d - 30 cmWinter 12/13 : 30 d - 59 cmWinter 10/11 : 23 d - 30 cm

High peaks make the traffic structure decisive

Arrivals

About 1,400 flights per day
2 aircrafts per min at peak hours
RWY throughput: 73 ARR/h – 76 DEP/h

AIRFRANCE / Which is the structure for half of traffic

CDM concept

A concept aiming at improving <u>airside operations</u> (nominal and adverse conditions), between:

This project is supported by Europe through Eurocontrol and SESAR project (Single European Sky ATM Research)

CDM@CDG concept

CDM origins

Since 2003, airports became bottlenecks

Congestion Point between airport & en-route delays

European traffic is due to triple by 2025

- → Reduce ATM costs by 50% per flight
 - → Increase safety by a factor 10
- → Reduce the environmental impact per flight by 10%

CDM@CDG origins

2003 Snow Event with

√ 2 days non-stop

✓ Cancellations : 25%

✓ Delays: +2h per flight

✓ Around 5,000 pax stucked inside terminals and 5,000 pax in the hotels

Every stakeholder used to work in silos, there was no coordination, no information sharing...

2004 DSNA, Aéroports De Paris and Air France launched CDM@CDG program in order to :

- √ deploy Airport Collaborative Decison Making (A-CDM) concept with Eurocontrol rules
- ✓ reduce delays, improve departures and arrivals prectibility
- ✓ reduce taxi-time, kerosene consumption and polluting emissions (CO₂, NOχ, HC ...)
- ✓ optimize airport capacities and resources usage

A-CDM label given to CDG on Nov 16th, 2010

CDM@CDG origins

Optimise predictibility

ARR/DEP with Eurocontrol

Optimize crisis airside management

(CDM in) Adverse Conditions achieves collaborative management of a CDM airport during periods of predicted or unpredicted reductions of capacity.

(procedures, CDM cell...)

Create a PDS

(Collaborative) Pre-departure Sequence establishes an off-block sequence taking into account operators preferences and operational constraints.

Airport CDM Concept Elements

Variable Taxi Time is the key to predictability of accurate take-off in block times especially at complex airports.

VTTT (PDS)

To be an A-CDM airport

→ Respect those Operational and Technical concepts

The Milestones Approach (Turn-Round Process) aims to achieve common situational awareness by tracking the progress of a flight from the initial planning to the take off.

> Optimize turnaround

A-CDM airports across Europe

A-CDM is fully implemented in 28 airports accross Europe

A-CDM outside Europe

- Dubai (DXB)
- Changi (SIN)
- HongKong (HKG)
- Mumbai (BOM)
- Australia (multi-a/p)
- New Zealand
- Russia
- Africa
- Americas (YYZ, GRU)
- Others.....

CDM@CDG structure

Operational Pillar

To optimise operational collaboration between stakholders

- → To reinforce sharing information: daily teleco and dedicated website
- → To create trust between stakeholders
- → To harmonize processes and improve collaboration decision process

Technical Pillar

To optimise departures flights sequencing

- → Industrialize the departure process
- → Optimize airport ressources: Boarding, Stands, Deicing pads, Runways
- → Reduce traffic congestions on taxiways and close to runways thresholds (increase safety)
- → Limit the environmental impact of airport operations (kerosene, gas emissions)
- → Enhance predictability to the Network Manager (prediction 3 hours before)
- → Optimise punctuality (a better Delay 0 KPI)

Benefits

Dep taxi-time: - 2.5 min/flight

Kerosene: - 4,000 t/yr (~4 M€/yr for airlines)

CO₂: -12,000 t/yr

CDM@CDG structure

CDM cell

At Paris-CDG, operational collaboration is present in **normal** conditions and stepped up in **adverse** situations.

When there are adverse conditions, the operational stakeholders decide to meet up in a dedicated decision-making room: the CDM Cell.

→ Its main purpose is to improve communication between the stakeholders to facilitate joint analyses and decision-making.

CDM Cell in « veille opérationnelle » : LEVEL 1

- Nominal situation
- REP CDGR (Airside Ops duty manager) supervising airside operations
- Sharing information and collaborative decision between ops stakeholders

CDM Cell in « veille active »: LEVEL 2

- Monitoring non nominal situation (e.g. starting a runway refurbishment)
- Anticipating delays

CDM Cell in « armé décisionnaire » : LEVEL 3

Stakeholders present in the A-CDM cell define the strategy to optimise airside operations

CDM cell

In order to manage the airside operations during adverse conditions and make the tactical decisions, it is necessary to:

Develop tactical solutions resources utilization (runways, deicing pads...) and impact on traffic

Share available information continuously to all participants

ROADMAP CDM@CDG 2020

CDM@CDG: for all parties' interest

- ✓ for Eurocontrol the European **Network Manager** : more up to date and accurate information leading to better network planning
- √ for the airport operator : improved use of stands/gates
- ✓ for the ground handler: more accurate arrival times and planning. Better use of resources
- ✓ for the **aircraft operator**: improved awareness about the status and location of the aircraft, more accurate fleet predictions. Significant decrease in fuel costs for the environment: less noise and lower CO₂ and NOx emissions
- ✓ for the air traffic controllers : reduced workload due to a greater predictability of traffic
- ✓ for the **passenger** : reduced delays and probability of missed connections, better reliability on flights meaning improved customer satisfaction

CDM@CDG

- ✓ Optimises the aircraft turnaround process and improves operational efficiency.
- ✓ Is based on information exchange between operational users and suppliers of services at airports.
- ✓ Improves accuracy and predictability of arrival and departure information.
- ✓ Improves punctuality as airport partners work together as an aircraft turnaround team.

CDM implementation

MET@CDM

Gains

Météo France: a key partner for CDM@CDG

Share information for pro activity

Update on regular basis

Communicate for better understanding

Back-up CDM community → manager on duty during winter period, physically participating to CDM cell

Develop tools to meet customers needs and expectations → dedicated WG

Long term forecast for coming winter (temperature & precipitations)

METEO FRANCE @CDG

Dedicated website providing observations & forecast

minutes.

Le diagramme des contaminants et températures de piste est désormais mis à jour au pas horaire. Il est accompagné d'une nouvelle légende. Voir l'ongiet AIDE DECISION /

ETAT PISTES

Animation sur 1h30mn

Mentions Légales Contact Version mobile

METEO FRANCE @CDG

Real time observations

RWY temperature forecast

Wind speed

Radar imagery

Regional forecast

The « Aerogramme » as a reference

Short term detailed forecast for coming hours & days

				_													-					_													e .						
			jeudi 2			00	0.7	00	00	0.4	0.5	0.5	07	-00	-00	10		edi 22		2.4	3.5	2.0		7.0	7.0	20		22	22	00	same				diman			25	26		28
	19	20	21	22	23	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	1/	18	19	20	21	22	23	00	06	12	18	00	06	12	18	lu	ma	me	je
CIEL																																W	//	//	//						
	1500 1000	Int.	No.	500 250	Ina.	Inu.	1000 500																																		
Plafond TAF								Ing.										Inc.																							
Pluie															•	•	•																								
Verglas											₽ J	₽	₽ U	₽J.																											
Brume	\equiv	三																																							
Visibilite TAF	5000 3000	Inu.	Lva.	I val.	Ing.																																				
GLACE AU SOL											COPPER	SOF BOF	CUPCE	CURCE																											
Tmax	2																												4	4					5			4	4	5	4
Т	2	1	1	1	0	-1	-1	-1	-1	-1	0	0	0	0	0	0	1	1	1	1	2	2	2	3	3	3	3	3	4	4	2	2	2	4	5	4	3	3	3	4	2
Tmin					0		-2																										2				0	0	0	0	1
Hu	85	93	93	97	97	100	100	100	100	100	100	100	95	95	100	100	97	100	100	100	100	84	84	80	80	80	84	80	77	80	80	76	79	72	74	78	87	73	76	71	100
DIR. VENT	4	1	1	1	*	*	4	4	4	4	4	4	4	4	4	*	4	4	>	4	1	1	1	1	•	•	•	•	-	٧	1	4	-	1	•	₹	~	1	~	-	4
Vent moyen	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	2	2	2	2	5	5	5	5	5	5	2	5	5	5	5	5	5
Vent max.	8	8	8	8	10	10	10	10	10	10	10	15	15	15	15	15	10	10	10	10	10	10	10	10	5	5	5	5	10	10	10	10	10	10	5	10	15	10	10	10	10
Sympo																																									

	mardi 29 16 17 18 19 20 21 22 23																mercre														jeud	131			vendr			02			05			
	16	17	18	19	20	21	22	23	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	00	06	12	18	00	06	12	18	sa	di	lu	ma
CIEL							1	1	1		11/2	11/2													/// /	1	//	//	//	//	//	//	//	1		/// /	<i>7//</i>	11/2	11/2	1	//	//	//	//
Plafond TAF							INI.	INL.	1500 1000	1500 1000	1500 1000	1500 1000	500 250	500 250	500 250	500 250	500 250	500 250	500 250	500 250	500 250	500 250	500 250	Inc.	Int.	Ing.																		
N-1														<u>:</u>	<u>:</u>	<u>:</u>	<u>:</u>	<u>:</u>	<u>:</u>																									
Neige									Ÿ	Ť	Ť	Ť	Ť												Ť																			
Tenue Neige														HUM 10-15																														
Visibilite TAF														1500 800	1500 800	1500 800	1500	1500 800	1500 800	1500 800	1500 800	1500 800	1500 800	1500																				
GELEE BI VEHICULES																												\geq	$\overline{}$	\geq	\geq	\geq	$\overline{\mathcal{L}}$				\leq				\leq	\leq	\leq	\leq
Tmax							1																									3	4							3	5	4	5	5
Т	0	0	0	0	0	0	1	0	0	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	0	2	2	3	3	2	2	0	-1	-2	0	1	2	1	1	2
Tmin	0									-2																										-2		-2			-1	-2	-1	-1
Indice Confiance																																									3	3	3	3
Hu	35	40	46	45	45	50	50	50	55	60	65	70	94	94	99	94	94	70	75	80	85	85	85	85	90	90	80	69	72	71	66	53	57	62	85	85	80	90	55	75	55	40	35	35
DIR. VENT	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	~	~	~	~	~	~	*	*	1	K	A	>	_	*	*	*	•	~	7	1	~	*
Vent moyen	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	15	15	15	15	15	15	10	10	5	5	5	5	5	5	5	5	5	5	5	2	5	5	5	5	5
Vent max.	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	20	20	20	20	20	20	15	15	10	10	10	10	10	10	10	10	10	10	10	5	10	10	10	10	10

CDM@CDG

Pre-tactical work in winter conditions

Weather forecast

Global traffic forecast

V

And other information or partners constraints that can impact traffic flow

- Characterize the CDM Cell operational collaboration's level
- Adaptate de-icing & snow clearing means
- Suggest cancellations flights

Tactical work in winter conditions

Meteorological forecast

RWY Temp & freezing point Ground movements

Real-time indicators: Traffic load, deicing throughput, etc.

Network data

And other information!

Runways and Taxiways snow clearing strategy

CDM implementation

MET@CDM

Gains

Gains

Improvements on:

- Safety
- Punctuality
- Forecasting
- Confidence
- Performance and capacity
- Quality standards
- Risk assessment
- Crisis management
- Taxi time
- Airport image

Figures

- Aircraft queueing (-40%)
- ATC delays
- Taxy time (up to 20%)

- **►** Environmental impacts
 - Fuel consumption
 - CO₂ emissions

Thank you for your attention

