Inter-comparison MTSAT-2 & Himawari-8

WMO Volcanic Ash Advisory Centre Best Practice Workshop 2017

Tokyo Volcanic Ash Advisory Centre Japan Meteorological Agency

Outline

Introduction

- Himawari-8, a next generation meteorological satellite, was launched in 2014 and became operation in July 2015.
- Such new satellites contribute to improvement of VA analysis techniques and methods and enable VAACs to provide more accurate and timely information.
- On the other hand, volcanic ash which used to be NOTdiscernible may become identifiable.

As part of efforts to develop discernible ash agreed techniques, inter-comparison of satellites are required

Enhancement of Observation Function

Examples of satellite imagery

Mainly eight types of imagery shown below are utilized for operational analysis in VAAC Tokyo (unit: μ m).

TOKYO VAAC Japan Mete

Tokyo Volcanic Ash Advisory Center Japan Meteorological Agency

Comparison of appearance

Tokyo Volcanic Ash Advisory Center Japan Meteorological Agency

Method

[Period]

- From May 2015 to March 2016
- Choose nine cases

[Method]

For each case, five to six operational forecasters,

- Utilize operational procedures, but numbers of points (vertices) are not limited.
- Analyze imagery that are available for both satellites, including IR, S1, I4, VIS and S2.
- Determine VA areas every hour by using all imagery available until that time.

Cases

No.	Volcano	Period		Max.
		Start	End	Height
1	SAKURAJIMA	13/05/2015	14/05/2015	FL150
2	SAKURAJIMA	25/05/2015	26/05/2015	FL110
3	SHEVELUCH	12/03/2016		FL130
4	KARYMSKY	15/07/2015		FL090
5	KUCHINOERABUJIMA	29/05/2016		FL360
6	ZHUPANOVSKY	12/07/2015	13/07/2015	FL290
7	ZHUPANOVSKY	14/07/2015		FL140
8	SHEVELUCH	12/02/2016		FL150
9	RINJANI	05/11/2015		FL200

Analysis Tool (SATAID)

- Display several types of imagery in looping.
- Change gradation of imagery for monitoring and analysis.
- Draw VA polygons and calculate their ash top height and movement.

Tokyo VAAG For details of SATAID: http://www.data.jma.go.jp/mscweb/en/VRL/index.html

Case 1 Sakurajima

Case 1: Sakurajima 13 May – 14 May, 2015

Tokyo VAAC 10 * If there is only one analysis, values are shown in white as references

VIS imagery during daytime

There is little difference on VIS images. If the condition is good, an impact of high spatial resolution may

be saturated.

Analysis result

Himawari (above) provides more accurate results with less individual differences.

TOKYO VAAC Tokyo Volcanic Ash Advisory Japan Meteorological Agency

Polygons represent analysis results by forecasters

S1 Imagery during night time

Not only by difference in resolutions, difference in sensors' characteristics also affect analysis results.

Analysis result

Larger area of VA is detectable on Himawari, while individual differences are quite large.

Summary

- VIS images provide similar appearance if the condition is good. However, if VA is covered MET clouds or is above the ground, analysis on Himawari is more accurate.
- VA appearances on split images are quite different; it induces large differences in analysis results during night time.
- 3. VA on Himawari is detectable longer than VA on MTSAT-2.

Takeaways from other cases

Case 3: Sheveluch 12 March 2016 0200UTC-0400UTC

Himawa 8 sp 2016-00	=12.01.40UTC	Himaw	ari-8 S1
	-1-15	and the second	1.3
14 (ala)	a the state		6:4
			Str.
Hist I	1		1.
and the second			
A a A to	the states		

Himawari-8 S1 0400UTC

TOKYO VAAC Tokyo Volcanic Ash Advisory Center Japan Meteorological Agency

Himawari detects small eruptions

120400

Time (DDhhmm)

120500

120600

120700

120300

120200

Takeaways from other cases

Case 6: Zhupanovsky 12 July 2015 1900UTC

MTSAT-2 analysis sometimes judges NOT-VA part as VA part

Tokyo Volcanic Ash Advisory Center Japan Meteorological Agency

Discussion – positive impacts

- Being able to detect small eruptions and volcanic ash from such eruptions that used to be missed.
- Being able to identify volcanic ash under bad conditions, such as VA is covered by met clouds.

New satellites contribute to reducing miss-detections and to providing more timely and accurate VAAs.

However ...

Takeaways from other cases

Case 3: Sheveluch 12 March 2016 0900UTC

Forecasters are able to detect very week signal on Himawari imagery; it induces large differences among forecasters, in particularly the last few hours before dissipation.

Discussion – negative impacts

- Increase of operational work
 - Monitoring more satellite observations and new types of imagery and products.
 - Issuing more VAAs, in particularly for relatively small eruptions.
- Difficulty in keep consistency
 - Analysis in advanced satellite induces further individual differences within VAAC.
 - Analysis in different satellites results in much larger differences among VAACs.

Discussion – future works

- Satellite comparison
 - Old and new satellites (in VAAC)
 - New satellites (among VAACs)
- Analysis
 - Enhancement of analysis skills (in VAAC)
 - Development of agreed techniques for discernible VA detection (among VAACs)
 - Development of satellite products (beyond VAACs)

Himawari-8 began operation at 02:00 UTC on 7th July 2015.

