Nadir and limb UV-visible satellite observations of volcanic clouds

Simon Carn¹, Matt DeLand², Nick Gorkavyi², Eric Hughes³ and Nick Krotkov⁴

1. Michigan Technological University, Houghton, MI

2. Science Systems and Applications, Inc., Lanham, MD 20706, USA

3. University of Maryland, College Park, MD, USA

4. Code 614, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA

Goddard Space

UV satellite instruments currently in orbit

Instrument	Satellite(s)	Overpass	Nadir footprint area (km²)	Data coverage
Polar orbiters (LEO)				
Ozone Monitoring Instrument (OMI)	Aura	1:45 pm	312 (13×24)	Sep 2004 - present
Global Ozone Monitoring Experiment-2 (GOME-2)	MetOp-A/B	9:30 am	3200 (40x80)	Oct 2006 - present
Ozone Mapper and Profiler Suite (OMPS)	Suomi NPP	1:30 pm	Standard: 2500 (50 × 50) Zoom: 100 (10 × 10)	Apr 2012 - present
L ₁ Lagrange Point				
Earth Polychromatic Imaging Camera (EPIC)	DSCOVR	Full disk every ~90 mins	576 (24 × 24)	From late 2015

(Geostationary UV sensors planned for later this decade)

Current OMI measurements

- OMI measurements of Manam (PNG) eruption on July 31, 2015
- OMI spatial coverage since 2008 affected by row anomaly data gap – global coverage achieved every 2 days
- Good data in useable parts of swath

- UV satellite products:
- SO₂ column amount
 - Sensitive to tropospheric and stratospheric SO₂
- UV Aerosol Index (UVAI)
 - Semi-quantitative indication of ash presence
 - Sensitive to any UV-absorbing aerosol (ash, smoke, dust)

Suomi-NPP/OMPS Sensors

Limb Profiler (LP): Aerosol and Ozone profiles

- 3 OMPS instruments
 - Nadir Mapper (NM; ≈ OMI)
 - Nadir Profiler (NP)
 - Limb Profiler (LP)
- 13:30 LT ascending node

• OMPS LP:

- Looks aft, following nadir view by ~7 minutes
- 3 vertical slits with 250 km spacing
- Spectral range: 290-1000 nm
- ~2 km vertical resolution; surface to ~105 km altitude

Nadir Mapper (NM): swath similar to OMI

OMPS-NM spatial zoom mode: 10x10 km

Launched October 2011

OMPS-LP Aerosol Scattering Index (ASI)

Calbuco (Chile) plume on April 26, 2013

LP-L2-03-ASI674Curtain processed by LP-L2-03-1.0.13 in AS60000 @ 2015-04-27 17:08Z

Aerosol Scattering Index (ASI)

$$ASI = \ln \overset{\&}{c} \frac{I_0}{I_R} \overset{\ddot{o}}{\Rightarrow} \\ \overset{\&}{e} \frac{I_0}{I_R} \overset{\ddot{o}}{\otimes}$$

 I_0 = observed radiance I_R = modeled Rayleigh radiance

ASI is not a retrieval, but a semi-quantitative Indication of aerosol/cloud presence

Scattering angle effects important

OMPS (zoom): Ojos del Salado 'plume' – June 13, 2015

- Clear OMPS UVAI signal
- No coincident OMI UVAI anomaly (spatial resolution effect?)
- No OMPS or OMI SO₂ signal
- Volcanic eruption source unlikely

- OMPS-NM zoom mode observations of Ojos del Salado 'plume' on June 13, 2015
- No global OMPS-LP data during OMPS-NM zoom mode operation (bandwidth)

OMPS-NM SO₂ – Calbuco (Chile), Apr 22 – May 20, 2015

OMPS-NM UVAI – Calbuco (Chile), April 24, 2015

OMPS-NM SO₂ – Calbuco (Chile), April 24, 2015

Aqua/MODIS showing Calbuco ash – April 24, 2015

CALIPSO + OMPS-NM – Calbuco (Chile), April 24, 2015

CALIPSO + OMPS-LP – Calbuco (Chile), April 24, 2015

OMPS-NM SO₂ – Calbuco (Chile), April 26, 2015

OMPS-LP slits and CALIPSO tracks

OMPS-NM UVAI – Calbuco (Chile), April 26, 2015

OMPS-LP slits and CALIPSO tracks

Aqua/MODIS showing Calbuco ash – April 26, 2015

CALIOP backscatter and OMPS-LP ASI (to east)

CALIOP backscatter and OMPS-LP ASI (to west)

CALIOP backscatter and OMPS-NM

OMPS Direct Broadcast data for the North Atlantic

OMPS Direct Broadcast data for the North Pacific

http://directreadout.sci.gsfc.nasa.gov/?id=dspContent&cid=159

Detection of NO₂ in volcanic eruption plumes

- OMI detected NO₂ in 2011 Grimsvötn and 2008 Okmok volcanic clouds
- NO₂ known to be generated by lightning in thunderstorms
- Signal of plume electrification at overpass time
- Indicates air (N₂) entrainment

Okmok – Jul 12, 2008

- Both the Grimsvötn and Okmok eruptions featured distinct vertical separation of gas (SO₂) and ash
- Plan to analyze NO₂ data for other explosive eruptions and coincident WWLLN lightning detections

Deep Space Climate Observatory (DSCOVR) at L₁

- Earth Polychromatic Imaging Camera (EPIC)
 - ~90 min temporal resolution
 - Spatial resolution similar to OMI at sub-satellite point
 - SO₂, UVAI and volcanic ash retrievals planned

Summary

- OMI still providing high quality data outside data gaps
- OMPS-NM zoom mode (Saturdays) provides increased sensitivity to volcanic ash and SO₂
 - Ojos del Salado resuspended ash plume detected in UVAI; no SO₂
 - Future OMPS instruments on JPSS may be 100% zoom mode
- OMPS-LP: useful new tool for analysis of volcanic plumes
 - Additional plume altitude information between CALIOP overpasses
 - Aerosol type information?
 - Aerosol scattering signal in LP profiles even in young plumes
- Lightning-generated NO₂ detected in some eruption plumes
 - Additional technique for eruption detection
 - Indicative of strong convection and plume electrification at satellite overpass time
- DSCOVR/EPIC soon to be operational at L₁
 - Volcanic SO_2 and UVAI data with ~90-minute temporal resolution

Ash spectral refractive indices in the UV-visible

