

WMO 7th International Workshop on Volcanic Ash 19-23 Oct. 2015 @Anchorage (Alaska), USA

Introduction to Himawari-8 and its Application to Volcanic Ash Cloud Monitoring

Yuta Hayashi, Daisaku Uesawa and Kotaro Bessho

Meteorological Satellite Center, Japan Meteorological Agency

Outline of Himawari-8

Improved Resolutions

🗸 Spatial

MSC/JMA

- ✓ Temporal
- ✓ Spectral

Application to Volcanic Ash Cloud Monitoring

- ✓ Volcanic Ash Products of JMA
- ✓ Features of VOLCAT
- ✓ Detection of Volcanic Plumes

Future Plan

Summary

Himawari-8 began operation at 02:00 UTC on 7th July 2015.

Outline	of Him	lawari-8	
/ Advanced Himawari Imager (AHI)	Geostationary position	Around 140.7° E	
communication antennas	Attitude control	3-axis attitude-controlled geostationary satellite	
Solar panel	Communication	 Raw observation data transmission Ka-band, 18.1 - 18.4 GHz (downlink) DCS International channel 402.0 - 402.1 MHz (uplink) Domestic channel 402.1 - 402.4 MHz (uplink) Transmission to ground segments Ka-band, 18.1 - 18.4 GHz (downlink) Telemetry and command Ku-band, 12.2 - 12.75 GHz (downlink) 13.75 - 14.5 GHz (uplink) 	

Himawari-8 began operation on 7 July 2015, replacing the previous MTSAT-2 operational satellite

Improved Resolutions

MSC/JMA

MSC/JMA

Spatial Resolution

MTSAT-2 (VIS) 1km

Himawari-8 (B03) 0.5 km

03:00 UTC on 29 January 2015

21 Oct. 2015

MSC/JMA

Observation Frequency

MTSAT-2 (VIS) Every 30 min. (Japan area)

Himawari-8 (True Color) Every 2.5 min. (Japan area)

Improved spatial and temporal resolution enhance capability of detecting and tracking volcanic ash clouds!

Eruption of Kuchinoerabujima, located south of Kyushu island in Japan, on 29 May 2015.

MTSAT-2 VIS 29. MAY. 2015 00:000

21 Oct. 2015

WMO 7th International Workshop on Volcanic Ash @Anchorage (Alaska), USA

OO:OO:OOUTC

2015/05/29

Spectral Bands

	Himawari-8/9 Imager (AHI)						
T-2	Band		Spatial Resolution	Central Wavelength	Physical Properties		
as	1		1 km	0.47 µm	vegetation, aerosol	3 Vicibi	
IS 3 μm	2	Visible		0.51 µm	vegetation, aerosol	Addition of NIR	
	3		0.5 km	0.64 µm	low cloud, fog		
	4		1 km	0.86 µm	vegetation, aerosol		
5	5	Near Infrared	2 km	1.6 µm	cloud phase		
	6			2.3 µm	particle size	Bands	
	7			3.9 µm	low cloud, fog, forest fire	_	
)	8			6.2 µm	mid- and upper-level moisture	<pre>Increase of WV Bands</pre>	
IR3 9 .8 μm 9 10 11 12 13 .8 μm 14 IR2 15	9			6.9 µm	mid-level moisture		
	10			7.3 µm	mid- and lower-level moisture		
	11	Trafus us d	2 4 m	8.6 µm	cloud phase, SO2		
	12		Z KIII	9.6 µm	ozone content		
	13			10.4 µm	cloud imagery, information of cloud top	Increase of VIR Bands	
	14			11.2 µm	cloud imagery, sea surface temperature		
	15		12.4 µm	cloud imagery, sea surface temperature			
	16			13.3 µm	cloud top height]]	

21 Oct. 2015

MSC/JMA

Application to Volcanic Ash Cloud Monitoring

Improved resolutions achieved by Himawari-8

✓ Spatial (AHI resolution)

MSC/JMA

- ✓ Temporal (Observation Frequency)
- ✓ Spectral (Number of AHI bands)

Expected improvements in volcanic ash monitoring

- Sophistication of detecting and tracking volcanic ash clouds
- Enhancement of precision in retrieving quantitative information

Ash RGB

RGB Composite Imagery

MSC/JMA

Full-color imagery which implements the information of 3 different channels or combined channels and mark each part in red, green and blue color.

Volcanic Ash Products of JMA

> JMA+EUMETSAT Algorithm (for MTSAT-1R/2)

- Yukio Kurihara developed the algorithm based on look-up tables provided by EUMETSAT
- ✓ Output: cloud top height, AOD, effective radius, mass loading, probability
- Products are experimentally provided to Tokyo VAAC for evaluation and verification

NOAA/NESDIS Algorithm (for Himawari-8/9)

- ✓ Developed as a software package named VOLCAT (VOLcanic Cloud Analysis Toolkit) by NOAA/NESDIS
- ✓ Utilize combination of several techniques to identify volcanic ash (and dust) clouds
- ✓ Output: cloud top height, AOD, effective radius, mass loading, probability
- \checkmark Implementation into JMA/MSC system is in progress
- Outputs will be experimentally provided to Tokyo VAAC for evaluation and verification

<u>Many thanks to</u> Dr. Pavolonis and Dr. Sieglaff !

MSC/JMA

Features of VOLCAT

- The Spectrally Enhanced Cloud Objects algorithm^{*} is adopted
- Globally applicable (day and night)
- Wide range of low earth orbit and geostationary satellite sensors and combinations of them can be supported as inputs
- Identify volcanic ash clouds with a very low false alarm rate

[※] Refrences (Most recent)

- Pavolonis, M. J., J. Sieglaff, and J. Cintineo (2015), Spectrally Enhanced Cloud Objects—A generalized framework for automated detection of volcanic ash and dust clouds using passive satellite measurements: 1. Multispectral analysis, J. Geophys. Res. Atmos., 120, 7813–7841.
- Pavolonis, M. J., J. Sieglaff, and J. Cintineo (2015), Spectrally Enhanced Cloud Objects—A generalized framework for automated detection of volcanic ash and dust clouds using passive satellite measurements: 2. Cloud object analysis and global application, J. Geophys. Res. Atmos., 120, 7842–7870.

М5С/ЈМА

VOLCAT Output Examples

Eruption of Kuchinoerabujima on 29 May 2015.

Detection of Volcanic Plumes

- Volcanic plumes (eruption column), especially those reach the stratosphere, are difficult to detect as volcanic ash clouds
 - ✓ Optically thick cloud has no signal in brightness temperature difference (BTD) as volcanic ash, and cannot distinguish from deep cumulonimbus (Cb) clouds

While the eruption occurs around 17 UTC (analysis by Darwin VAAC), JMA+EUMETSAT product cannot detect volcanic ash cloud until BTD becomes negative at 20 UTC.

MSC/JMA

Idea :

Using cloud vertical growth information from time-series satellite data

Fast !

Time scale : several to several tens of minutes

Available only from high observation-frequency satellite data like those by Himawari-8 !

Slow... *

Volcanic Plume Detection by Cloud Vertical Growth Information

Eruption of Mt. Manam, Papua New Guinea on 31 May 2015.

Eruption Column 65000FT (19800 m a.s.l.)

Future Plan

- Replacement of ancillary data
 - ✓ SST: Daily MGDSST by JMA
 - ✓ LST: GSM forecast by JMA
 - ✓ Atmospheric Profiles: GSM forecast by JMA
- Experimental provision to Tokyo VAAC
 - ✓ Evaluation and Validation
 - ✓ Feedback to NOAA/NESDIS for further improvement

Intercomparison environment

- ✓ Different algorithms
- ✓ Different parameter settings
- ✓ Different ancillary data

Summary

- Introduction to Himawari-8
 - ✓ Remarkable advantage in resolutions
 - Spatial (AHI resolution)
 - Temporal (Observation Frequency)
 - Spectral (Number of AHI bands)

Applications to Volcanic Ash Cloud Monitoring

- Himawari-8 can greatly contribute improvements on volcanic ash cloud monitoring and analysis
 - Detection and tracking
 - Retrieval of quantitative information (height, AOD, etc.)
- ✓ NOAA/NESDIS algorithm is adopted for Himawari-8 volcanic ash product of JMA/MSC
- ✓ Volcanic plumes can be detected by use of cloud vertical growth information

Thank you for your kind attention !

21 Oct. 2015