Inter-comparison exercise of volcanic eruption column models

*Y. J. Suzuki (Univ. Tokyo, Japan) A. Costa (Univ. Tokyo; INGV, Italy) S. Barsotti (INGV, Italy; IMO) C. Bonadonna (Univ. Geneva, Switzerland) M. Bursik (Univ. Buffalo, USA) G. Carazzo (IPG, France) M. Cerminara (INGV, Italy) W. J. Degruyter (Georgia Tech, USA) M. de'Michieli Vitturi (INGV, Italy) L. C. Denby (Univ. Cambridge, UK) B. Devenish (Met. Office, UK) S. Engwell (INGV, Italy) A. Folch (Barcelona Supercomputing Center, Spain)

F. Girault (IPG, France)

- M. Herzog (Univ. Cambridge, UK)
- A. J. Hogg (Univ. Bristol, UK)
- E. Kaminski (IPG, France)
- G. Macedonio (INGV, Italy)
- L. G. Mastin (USGS, USA)
- A. Neri (INGV, Italy)
- J. C. Phillips (Univ. Bristol, UK)
- S. Tait (IPG, France)
- A. van Eaton (USGS, USA)
- C. Witham (Met. Office, UK)
- M. Woodhouse (Univ. Bristol, UK)

Eruption Column Height

Analytical model with empirical constant

Volcanic eruption column models

1D model

- *Based on the Buoyant Plume Theory of Morton et al. (1956)
- *Steady-state
- *Conservation eq. along the flow axis

Low computational costs Based on some assumptions (entrainment) -> Useful for operational purpose 3D model

*Unsteady

*Navier-Stokes eqs. in 3D domain

High computational costs Direct simulation of flow -> Useful for basic research

We aim to compare the results derived from different models and reveal the problematic points in the column models.

Models used in the exercise

Label	Name	Dimension	Air Entrainment	Corr. Author
1	Puffin	1D	α = 0.15, β = 1.0	M. Bursik
2	Degruyter&Bonadonna	1D	lpha = 0.10, eta = 0.5	W. Degruyter
3	PlumeMoM	1D	α = 0.09, β = 0.6	M. de'Michieli Vitturi
4	Devenish	1D	lpha = 0.10, eta = 0.5	B. Devenish
5	FPluMe	1D	α = <i>f</i> (Ri), β = <i>g</i> (Ri)	A. Folch
6	PPM	1D	α = <i>f</i> (Ri), β = 0.5	F. Girault
7	Plumeria	1D	α = 0.09, β = 0.5	L. Mastin
8	PlumeRise	1D	α = 0.09, β = 0.9	M. Woodhouse
9	Cerminara1D	1D	α = 0.10, β = 0.0	M. Cerminara
10	ATHAM	3D	LES	M. Herzog
11	SK-3D	3D	no-LES	Y. J. Suzuki
12	ASHEE	3D	LES	M. Cerminara
13	PDAC	3D	LES	T. Esposti Ongaro
14	Mastin et al. (2009)	0D		L. G. Mastin
15	Degruyter&Bonadonna(2012)	0D	α = 0.10, β = 0.5	W. Degruyter
16	Woodhouse et al. (2013)	0D		M. Woodhouse

Exercise cases

Representative 1D results (Plumeria)

Weak Plume without Wind Height (m) 0.9 0.8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 110 120 130 Radius (m) Entrained air fraction (-) Velocity (m/s) Strong Plume without Wind Height (m) 0.3 0.4 0.5 0.6 0.7 0.9 n 0.1 0.2 0.8 Radius (m) Velocity (m/s) Entrained air fraction (-)

Representative 3D results (SK-3D)

MERs for Fixed Column Heights

Column heights for Fixed MERs

Strong plume

Weak plume

Inter-comparison of 3D models (1)

Strong plume without wind

Time averaging between 900 to 960 sec.

Inter-comparison of 3D models (2)

Weak plume without wind

Inter-comparison of 3D models (3)

Windy cases

Summary

*For a fixd MER at the vent, the column heights simulated by each model seem showing a relatively good agreement with each other. However, because the strong dependence between MER and H, for a fixed column height, the estimated MER depends on which model is applied (differences are higher for weak plumes and in presence of strong wind).

*Profiles of 1D models for strong plumes differ from the crosssection integrals of 3D models whereas they are quite similar for weak plumes.

*On the basis of the 3D simulation results, it is required to develop new parameterizations of air entrainment assumed in the 1D models.

*We have to pay attention to the uncertainty of eruption column models when we use them for operational purposes.