Innovations in dispersion modeling using FALL3D and operations at the Buenos Aires VAAC

A. Folch

Barcelona Supercomputing Center (BSC-CNS), Spain

Co-workers:

A. Costa⁽¹⁾, G. Macedonio⁽¹⁾, S. Osores⁽²⁾, E. Collini⁽²⁾, J. Ruiz⁽³⁾, R. de la Cruz⁽⁴⁾, P. Farré⁽⁴⁾, R. Grima⁽⁴⁾, C. Scaini⁽⁴⁾ and O. Kjartansson⁽⁴⁾

(1) Istituto Nazionale di Geofisica e Vulcanologia (INGV), Italy

(2) Servicio Meteorológico Nacional (SMN), Argentina

(3) Universidad de Buenos Aires (UBA), Argentina

(4) Barcelona Supercomputing Center (BSC-CNS), Spain

WORLD METEOROLOGICAL ORGANIZATION (WMO) Seventh International Volcanic Ash Workshop Anchorage, Alaska, October 19-23

- FALL3D: An Eulerian model for emission, transport, deposition and re-suspension of tephra.
 - Community of users.
 - Experimental operational setup at the Buenos Aires VAAC based on coupling WRF/ARW with FALL3D-7.0 (http://www.smn.gov.ar/).
- This talk overviews different innovations implemented in the model (at a research level yet):
 - 1. Coupling with FPLUME-1.0 (a new BPT model considering wet aggregation).
 - 2. Ensemble forecast strategies using the Dakota toolkit.
 - 3. WARIS-Transport: a framework for HPC code optimization and porting to accelerator-based architectures.
 - 4. ZEN-ATM: an air traffic impact evaluation tool.
 - 5. Re-suspension (not today).

- Model forecasts strongly depend on the source term. Approaches to quantify the source term include:
 - 1. Empirical relationships between plume height and MER.
 - Good from the operational point of view.
 - 2. Assimilation of satellite retrievals trough model inversion.
 - Virtual source.
 - Only for fine ash.
 - 3. Coupling with 1D BPT models to simulate the source term.

- Plume model inter-comparison exercise promoted by IAVCEI (Costa et al., submitted; more on Yujiro's talk later on):
 - Blind test for strong and weak plumes.
 - Similar results for weak plumes, larger model discrepancies for strong plumes.

WMO IWVA-7

1D models oversimplify wind entrainment coefficients.

WMO IWVA-7

FPLUME-1.0: a new steady-state 1-D cross-section averaged model based on the BPT that accounts for:

- Plume bent over by wind.
- Entrainment of ambient moisture.
- Water phase changes.
- Particle fallout.
- Particle re-entrainment.
- Variable wind entrainment coefficients.
- Wet aggregation.

Geosci. Model Dev. Discuss., 8, 1–53, 2015 www.geosci-model-dev-discuss.net/8/1/2015/ doi:10.5194/gmdd-8-1-2015 © Author(s) 2015. CC Attribution 3.0 License. Geoscientific Model Development

This discussion paper is/has been under review for the journal Geoscientific Model Development (GMD). Please refer to the corresponding final paper in GMD if available.

FPLUME-1.0: An integrated volcanic plume model accounting for ash aggregation

A. Folch¹, A. Costa², and G. Macedonio³

WMO IWVA-7

Wind entrainment coefficients are typically assumed constant by BPT models:

$$u_e = \alpha_s |\hat{u} - u_a \cos \theta| + \alpha_v |u_a \sin \theta|$$

$$\downarrow \qquad \qquad \downarrow$$
Shear coefficient (stream-wise) (cross-flow)
$$\alpha_s \approx 0.1 - 0.17 \qquad \alpha_v \approx 0.3 - 1.0$$

• FPLUME-1.0 assumes parameterizations depending on the local *Ri* number:

$$\begin{aligned} \alpha_s &= 0.0675 + \left(1 - \frac{1}{A(z_s)}\right) Ri \,\sin\theta + \frac{r}{2} \frac{1}{A(z_s)} \frac{dA}{dz} \\ \alpha_v &= 0.34 \left(\sqrt{2|Ri|} \frac{\bar{u}_a}{\hat{u}_o}\right)^{-0.125} \end{aligned}$$

WMO IWVA-7

- A model for wet aggregation in the plume (Costa et al., 2010; Folch et al., 2010):
 - Ash aggregation by liquid water and ice.
 - One single aggregated class assumed.
 - Aggregates follow a fractal relationship.
 - Particle decay based on 4 collision kernels: Brownian motion, turbulent inertial effects, fluid shear and differential sedimentation.
 - The model predicts an "effective" TGSD: fraction of fine ash can be estimated.

2. Ensemble forecast

- PhD under development at the UBA/SMN (S.Osores).
- Objectives:
 - 1. To develop, implement and validate an operational ensemble forecast strategy for ash dispersal and fallout at the Buenos Aires VAAC.
 - 2. To account for uncertainties in the source term (and driving meteorology).

DAKOTA-v6.1.0:

- A Sandia National Laboratories open source toolkit (<u>https://dakota.sandia.gov</u>).
- DAKOTA contains algorithms for optimization, uncertainty quantification, parameter estimation and sensitivity/variance analysis.
- We use the stochastic expansion using the polynomial chaos expansion (*i.e.* bases of orthogonal polynomials are used to interpolate solutions at collocation points).

	Distribution	Density function	Polynomial	Weight function	Support range
Basis for different types of PDFs	Normal	$\frac{1}{\sqrt{2\pi}}e^{\frac{-x^2}{2}}$	Hermite $He_n(x)$	$e^{\frac{-x^2}{2}}$	$[-\infty,\infty]$
	Uniform	$\frac{1}{2}$	Legendre $P_n(x)$	1	[-1, 1]
	Beta	$\frac{(1-x)^{\alpha}(1+x)^{\beta}}{2^{\alpha+\beta+1}B(\alpha+1,\beta+1)}$	Jacobi $P_n^{(\alpha,\beta)}(x)$	$(1-x)^{\alpha}(1+x)^{\beta}$	[-1, 1]
	Exponential	e^{-x}	Laguerre $L_n(x)$	e^{-x}	$[0,\infty]$
	Gamma	$\frac{x^{\alpha}e^{-x}}{\Gamma(\alpha+1)}$	Generalized Laguerre $L_n^{(\alpha)}(x)$	$x^{lpha}e^{-x}$	$[0,\infty]$

Methodology:

- 1. Obtain the collocation points for all PDFs (depending on polynomial order).
- 2. Perform one run (ensemble member) for each set of values of the collocation points.
- 3. Obtain the stochastic response at each node of the output grid and time step.

2. Ensemble forecast

WMO IWVA-7

Application to the 2015 Calbuco eruption (Chile)

- We considered 3 uncertain ESPs with uniform PDFs.
 - 1. Column height: 13-17 km a.v.l. (constant in time; 15 km reported).
 - 2. Mean TGSD: 3-4 ¢
 - 3. Sigma TGSD: 0.5-1.5 φ
- MER is related to column height using Degruyter and Bonadonna (2012).
- Collocation using (Legendre) polynomials of 4th order (4³ = 64 ensemble members).

WMO IWVA-7

Probability to exceed 0.1 g/m² 23-04-2015 at 15 UTC

MODIS composite 23-04-2015 15-18 UTC

3. Code optimization and porting

- Ensemble forecast strategies may require several tens of model runs...
 - Is this feasible at operational level given the computational resources available?
 - Codes (FALL3D and others) are typically written and maintained by atmospheric scientists.
 - What a smart software engineer can do for you?
- For **FALL3D** we have done the following (de la Cruz et al., submitted):
 - 1. Software optimization:
 - FALL3D re-implemented in the BSC in-house WARIS framework.
 - Further WARIS-Transport improvements.
 - 2. Code porting to 2 accelerator-based architectures:
 - Intel Xeon Phi 5110P (60 cores, 240 threads).
 - Tesla K40 NVIDIA GPU card.
 - 3. Analysis of code performance and strong scalability.
 - 4. 2011 Cordón Caulle simulation: 3 days of forecast, 8 particle bins, very high-resolution computational domain (4km, 601 x 601 x 64 = 23M nodal points).

3. Code optimization and porting

Software optimizations considered in WARIS-Transport:

- Parallel I/O (HDF5).
- Asynchronous MPI communications.
- Hybrid MPI-OpenMP parallelization.
- Thread scheduler for optimal work balance.
- Minimize memory access latency.
- Spatial blocking (data reuse by traversing data in a specific order).
- Thread affinity (avoid memory access disruption and interferences across threads).

After that, porting to accelerator-based hardware architectures:

- Intel Xeon Phi 5110P (Many Integrated Core architecture MIC).
- NVIDIA Tesla K40 GPUs (Graphic Processing Unit).

3. Code optimization and porting

	Processing Units	Intel Sandy Bridge Pure MPI (naive)	Intel Sandy Bridge MPI+OMP (optimized)	Intel Xeon Phi (MIC)	NVIDIA GPUs (Tesla K40)
16 CPU	→ 1	7.3	9.6	9.1	17.6
	2	8.3	14.6	14.6	25.3
	4	12.7	23.3	-	44.3
	8	16.9	41.0	-	-
256 CPU	→ 16	16.0	55.2	-	-

Table 5: Speed-up time factor with respect to the FALL3D original implementation for the Caulle-0.05-8bin case considering 3 days of simulation and hourly I/O.

	Intel Sandy Bridge	Intel Xeon Phi	NVIDIA Tesla K40
Execution time (s)	2812	2845	2917
Processing Units	2 hosts (32 CPUs)	1 host + 2 MICs	1 host + 1 GPU (Tesla K40)
Approximated	2×5300 =	$1 \times 5300 + 2 \times 2500 =$	$1 \times 1300 + 1 \times 3000$
cost (US\$)	10600	10300	4300
Maximum	340 (1 host)	36 (idle host) +	200 (1 host) +
Watts/hour		225 (1 MIC)	235 (1 GPU)
Watts/exec	530	384	352

Table 6: Watts per execution and cost per platform. The comparison is done for the Caulle-0.05-8bin case with similar execution times between different platforms: 2 PUs of Intel Sandy Bridge, 2 PUs of Intel Xeon Phi and 1 PU of NVIDIA Tesla K40 GPGPU.

Conclusion: optimization is a must for operational ensemble forecast !

ZEN-ATM:

- A tool to evaluate the impact of volcanic ash and mineral dust on civil aviation.
- The prototype works with FALL3D (for ash) and WMO Sand and Dust Storm Warning Advisory and Assessment System (SDS-WAS) for dust.
- ZEN-ATM merges model forecasts and ATM databases (airports, routes, FIRs and flights) to evaluate impacts based on user-defined criteria (*e.g.* concentration threshold, maximum dose, visibility at surface).
- Filtering by airlines, countries, FIRs or airports is possible.

😣 💷 Wizard	File Impacts Help	•
Barcelona Supercomputing Center ZEN-ATM Select Forecast		olay work Information Wrports Hights Show datablock HR act analysis
Title: Startdate EndDate Number of timesteps Minimun latitude Maximum latitude		Airports Airports FiR torecast Computational domain ght Level C_FL050 ;
Minimun longitude Maximum longitude		centration Values mg/m^3 Add Delete poral buffer: 0 _ ± hours jal Buffer 0 _ NM ng filer 0 Au

4. Air traffic impact evaluation tool

WMO IWVA-7

		Dialog	a gara
	Analysis setu	n	
	Airports	r	
so and the second se	M Impacts		
	Flights		
	Direct impac	ts	
	🗹 🖾 🖾 🗹 Indirect imp	acts	
	FIRs		
and strong and	Macts Impacts		1. S
	Temporal buffe	r 0 +/ Hours	
the second second			
	Spatial buffer	p v NM	
En 2	Call sign filter		
	BAW		
June 1			
Server States		(Cancel) (OK	
· · · · · · · · · · · · · · · · · · ·	λ		
	-un	J I Want	~

Perform the impact analysis on

- 1. Airports (FL050)
- 2. Flights
 - Direct
 - Indirect
- 3. FIRs

Define buffers depending un confidence

WMO IWVA-7

Show impacts on airports and FIRs (time dependent)

Shows impacts on flights (time dependent, filtered by airline)

Several innovations at a scientific level are mature enough for transfer into operations (after further validation)

THANK YOU!

afolch@bsc.es

WORLD METEOROLOGICAL ORGANIZATION (WMO) Seventh International Volcanic Ash Workshop Anchorage, Alaska, October 19-23

