

### **A History of Ash Avoidance**

#### **Thomas J. Casadevall**

U. S. Geological Survey, Denver, Colorado, USA

WORLD METEOROLOGICAL ORGANIZATION Seventh International Volcanic Ash Workshop Anchorage, Alaska, October 19-23, 2015

U.S. Department of the Interior U.S. Geological Survey

# ESTUDIO SOBRE LA CRISIS VOLCANICA De la cordillera de los andes

#### Exploraciones aéreas sobre el Volcán Quizapu en erupción

POR

JULIO BUSTOS NAVARRETE Director del Observatorio del Salto y Profesor de la Escuela de Aviación



### Quizapu, Chile April 12, 1932





# Our goals

- Volcanoes and their activity
- Airplanes, airports, and their vulnerability
- History of encounters
- Communicating the hazard
- Mitigating the risk
- Future outlook / Volcanological guidance



#### **Global Air Routes**

source: Airline Route Mapper, Open Flights







### **Historically Active Volcanoes**

Indonesia 75 **United States 65** Japan 58 Russia 52 Chile 42

from Siebert et al, 2010



## **Global Volcanism**

- ~ 575 "historically" active terrestrial volcanoes
- ~ 200 of these have some type of geophysical monitoring or observation
- ~ 12 eruptions annually with VEI of 2+ affecting "cruise-altitude" airspace

sources: WOVO, Smithsonian Institution



# Volcano Hazards





#### Volcanic Plumes and Ash Clouds

- Quiescent plumes
- Eruption columns
- Ash clouds



#### **Quiescent Plumes**





#### **Eruption Columns**

- dark-colored pillars of ash and gas that rise rapidly above a volcanic vent to altitudes exceeding 100,000 feet (>30 km)
- dense concentrations of ash and gas seldom directly affect an area more than a few tens of kilometers from the volcanic vent













#### Calbuco eruption, Chile April 22, 2015

source: Carlos Gutierrez, AP



#### **Eruption Clouds**

- ash is carried by upper level winds for hundreds to thousands of kilometers
- may enter the stratosphere and encircle the globe in days to weeks
- typically lose their heaviest ash load over a period of a few hours to a few days
- difficult to distinguish from weather clouds
- pose the greatest threat to aircraft





Redoubt eruption cloud, Anchorage airport, March 1990





#### Rabaul eruption, September 1994

source: Space Shuttle, (STS-64) NASA





#### Calbuco, Chile, April 22-23, 2015 Source: NASA, MODIS sensor

#### Volcanic Ash

(finely fragmented rock and minerals)

- fine-grained (<1 micron to > 100 microns)
- hard and angular (= highly abrasive)
- melts in jet engines (clogs engines and causes stalling)







## **Global Volcanism**

- ~ 575 "historically" active terrestrial volcanoes
- ~ 200 of these have some type of geophysical monitoring or observation
- ~ 12 eruptions annually with VEI of 2+ affecting "cruise-altitude" airspace

sources: WOVO, Smithsonian Institution



#### Major eruptions of the 21<sup>st</sup> Century VEI > 3+, affecting aviation

- Reventador, Ecuador 2002
- Chaiten, Chile 2008
- Eyjafjallajökull, Iceland
- Merapi, Indonesia
- Puyehue-Cordón Caulle, Chile 2011
- Sinabung, Indonesia
- Kelut, Indonesia
- Calbuco, Chile



source: Smithsonian Institution

2014-2015

2010

2010

2014

2015

#### **Global Air Routes**

source: Airline Route Mapper, Open Flights













VA ADVISORY DTG: 20100420/1800Z VAAC: LONDON VOLCANO: EYJAFJALLAJOKULL 1702-02 PSN: N6338 W01937 AREA: ICELAND SUMMIT ELEV: 1666M ADVISORY NR: 2010/027 INFO SOURCE: ICELAND MET OFFICE AVIATION COLOUR CODE: RED ERUPTION DETAILS: ERUPTION CONTINUING TO AROUND FL120 TO FL180.

RMK: NO SIG ASH ABOVE FL200. ASH CONCENTRATIONS UNKNOWN. THE TWO PLUMES ON 20/1800Z AND 21/1200Z CHARTS ARE BOTH AT SFC/FL200. NXT ADVISORY: 20100421/0000Z



- between April 15 and May 16, 2010, 34 countries imposed flight restrictions
- flight disruptions on a global scale
- more than 100,000 commercial flight cancellations
- ~10 million passengers affected
- estimated economic loss >\$US 2.2 billion



sources: IATA, ICAO,

### Framing the issue - Costs

**2010 Iceland eruption**: estimated losses of between \$US 1.7 and \$US 2.2 billion *(IATA, 2011)* 

**1995-1996 Ruapehu, NZ:** ~ \$US 1.6. million (Johnston et al, 2000)

**1992 Cerro Negro, Nicaragua:** ~ \$US 300,000. *(UN-ECLA, 1992)* 

**1991 Pinatubo, Philippines:** ~ \$US 100. - 200. million (Casadevall et al, 1996)

**1989-1990 Redoubt, Alaska:** \$ US 101. million *(Tuck and Huskey, 1994)* 



#### Aircraft Encounters / Year





# Volcanoes responsible for damaging encounters of aircraft with ash clouds





#### **Encounter Severity Index**

- more than 130 reported encounters since 1953
- to classify reports of aircraft encounters with volcanic ash
- 6 classes (ranked from "0" to "5") of encounter "severity" depending on character of encounter and effects to aircraft and engines



#### **Encounter Severity Index**

- 0: sulfur odor and anomalous haze
- 1: light dust in cabin; engine temperatures fluctuate but remain "normal"
- 2: heavy cabin dust; exterior abrasion; deposition of ash in engines
- 3: engine vibration and "surging"; engine damage
- 4: temporary engine failure
- 5: engine failure or other damage leading to crash



| Encounter Severity       | Index  |
|--------------------------|--------|
| Severity Class           | Number |
| 5                        | 0      |
| 4 (engine failure)       | 9      |
| 3                        | 17     |
| 2                        | 53     |
| 1                        | 12     |
| 0                        | 23     |
| Lacking data             | 15     |
| Total incidents reported | 129    |



#### Impacts and Damage (in flight)

- abrasion of windows and exterior surfaces
- plugging of inlets and pitot system
- erosion of engine parts
- accumulation of melted ash in engine






### RELATION OF AIR TRAFFIC ROUTES TO ACTIVE VOLCANOES IN ALASKA





































Impacts and Damage (on the ground)

- contamination of airport surfaces and aircraft on-the-ground
- contamination of electrical circuits
- reduction of visibility
- ash is slippery when wet affects braking and turning



### Vesuvius eruption, Italy, 1944





## Vesuvius eruption, Italy, 1944







### Moses Lakes, Washington, May 19, 1980





### Reventedor ashfall at Quito airport, Ecuador Oct. 1999 ≥USGS



Feb. 2014 Kelut ashfall at Yogyakarta airport, Indonesia



source: AFP photo / Ninoy



#### June 1991 Pinatubo ashfall, Cubi Pt. NAS

source: US Navy photo





### Ashfall, Rabaul airport, PNG 1994



source: Russell Blong





### How do we avoid encounters?

- avoid ash
- timely communication of volcano information
- increase awareness that volcanic hazards extend well beyond the area adjacent to the volcano and may extend 100s to 1000s kms downwind
- early detection of ash in the airspace
- pilot training to address the volcanic ash threat





### View from the cockpit – Maipu volcano, Chile

source: Captain Salas, 2010



Communications and Information: A View from the Cockpit

- Pilots always manage risk and weigh their options based on information
- Pilots need information that is:
  - Timely
  - Believable
  - Understandable
  - Clear

- Integrateable with their operations



Captain Carlos Salas, IFALPA - Europe

### **Communicating the Hazard**

- Color Codes
- Volcano Observatory Notice for Aviation (VONA)
- SIGMETS
- Volcanic Ash Advisories (VAA)
- Volcanic Ash Graphical Products (VAG)



# **Eruption Notification**

THIS IS AN ERUPTION NOTIFICATION FROM THE \_\_\_\_\_\_OBSERVATORY. SEISMIC (or other data) INDICATE THAT A (small, moderate, large) ERUPTION OF \_\_\_\_\_\_VOLCANO, LAT\_\_\_\_\_, LONG \_\_\_\_\_, BEGAN AT \_\_\_\_UTC ON (date). THE LEVEL OF CONCERN COLOR CODE IS (orange, red).



#### **AVO LEVEL-OF-CONCERN COLOR CODE**

| Color  | Intensity of Unrest at Volcano                                                                                                  | Forecast                                                                                                                                                             |
|--------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GREEN  | Volcano is in quiet, "dormant" state.                                                                                           | No Eruption anticipated                                                                                                                                              |
| YELLOW | Small earthquakes detected locally and (or) increased levels of volcanic gas emissions.                                         | An eruption is possible in the next<br>few weeks and may occur with lit-<br>tle or no additional warning.                                                            |
| ORANGE | Increased number of local earthquakes.<br>Extrusion of a lava dome or lava flows (non-<br>explosive eruption) may be occurring. | Explosive eruption is possible<br>within a few days and may occur<br>with little or no warning. Ash<br>plume(s) not expected to reach<br>25,000 feet above sea level |
| RED    | Strong earthquake activity detected even at distant monitoring stations. Explosive erup tion may be in progress.                | Major explosive eruption expected<br>within 24 hours. Large ash<br>plume(s) expected to reach at<br>least 25,000 feet above sea level.                               |
|        |                                                                                                                                 |                                                                                                                                                                      |



## **Volcanic Ash Advisory Centers**





# Volcanic Ash Advisory Centers

Anchorage **Buenos Aires** Darwin London Montreal Tokyo Toulouse Washington Wellington

- established in the early
  1990s by Intl. Civil Aviation
  Organization (ICAO)
- coordinate and disseminate information on atmospheric volcanic ash clouds affecting aviation
- VAACs operated by national weather forecasting organizations





VAAC's role

 $\underline{\text{Toulouse VAAC}}$ 

The MEDIA model

Sample of outputs

Miscellaneous





**e** 

# Movement of Volcanic Ash

- not detectable in the cockpit using current technology
- difficult to distinguish ash cloud from weather cloud
- reliance on radar remote sensing
- track using satellite remote sensing
- forecast movement using numerical models





### Puyehue-Cordón Caulle, Chile June 2011

MODIS image, NASA Earth Observatory







## **Trajectory Forecast Model**

- numerical trajectory models forecast dispersion of a pollutant cloud
- input includes start time, duration of input, and altitude of dispersion



### **Graphical Product**



**≥USGS** 

## **Future Developments**

- Active in-flight detection of ash
  - ZEUS
  - AVOID
- Volcanic ash ingestion testing – VIPR
- Communications protocols improving the links between volcano observers and VAACs



### ZEUS

- UK Met Office and Natural Environment Research Council have a prototype ash detection device;
- ZEUS sensor distinguishes electrostatic charge on the aircraft when volcanic ash is present.
- Sensor tested on a British Airways 747 on long-haul routes
- A prototype sensor on a UK research aircraft and a *Flybe* passenger aircraft since 2012



# AVOID

- AVOID (Airborne Volcanic Object Identifier and Detector) to provide real-time imagery of hazards ahead of aircraft.
- Information to the cockpit from two imaging infrared cameras tuned to detect volcanic ash particles up to 100 km ahead of the aircraft day or night.
- to give pilot 7 10 minutes warning of a potential encounter with ash cloud.
- to convert the image signal into <u>ash concentrations levels</u>, from <1 mg to > 50 mg cubic m


## Volcanic Ash Ingestion Testing VIPR

- a team of U.S. agencies and engine manufacturers
- test volcanic ash ingestion by a high by-pass jet engine
- determine the effect of exposure to low to moderate ash concentrations (1 and 10 mg/m3)
- uses natural volcanic ash; representative of distal ash clouds many 100's to ~1000 km from a volcanic source



# **Volcanic Ash Ingestion Testing**

#### Source material

- Using Mazama eruption ash (~7,700 y.b.p.)
- ~100 kms from vent at Crater Lake, Oregon
- ~70% SiO2





## Volcanological Guidance

- International Airways Volcano Watch Operations Group, scientific advisory body to International Civil Aviation Organization (ICAO) to advise and provide guidance on operational requirements related to volcanic ash hazard
- representative from IUGG / IAVCEI
- members from VAACs
- Volcanic Ash Scientific Advisory Group, formed under auspices of WMO and IUGG / IAVCEI, to provide advice on volcanic ash, volcano monitoring, etc...



### Acknowledgements

Marianne Guffanti, USGS John Lekki, NASA Ian Lisk, UK Met Office Larry Mastin, USGS Fred Prata, Nicarnica Aviation Lee Siebert, Smithsonian / USGS Grace Swanson, Washington VAAC / NOAA



Thank you

