Verification and performance measures of Meteorological Services to
Air Traffic Management (MSTA)

Background

Information on the accuracy, reliability and relega of products is provided in terms of
verification methods, metrics and/or performancasueements. For “Scientific” verification
and assessment of accuracy, the MET community milyreses several methods that were
developed from a MET perspective, addressing priyndne need to ensure that system
changes lead to improved results. Neverthelesctmsnunity understands the need to move
from a pure MET assessment of accuracy towardsT™@W Ampact based or scenario based
evaluation. Several initiatives seeking to quaniifypacts and express success in user-
oriented terms currently exist in several Statdgs Bocument aims at giving an overview of
these developments.

MSTA Forecast

MSTA forecasts are designed to facilitate decisopport for aviation stakeholders. Hence,
weather forecast elements would be mapped to impact air traffic operations. These
weather elements and the quantitative thresholdsceteria to be used for this mapping are
to be determined by agreement between MET authotiity service provider and user
communities concerned. Moreover, information oa tevel of confidence (measures of
reliability) that the users can put on the foresdstrequired as an essential element of a
decision support system. This confidence level sgedbe derived from verification and
validation processes, and would typically be sderdependent.

Verification and performance measures of MSTA forecast

MSTA forecasts aim to facilitate decision suppdtence, it is crucial tdorecast
whether the weather elements concerned (e.g. gelileight, visibility, crosswind,
thunderstorms hitting certain holding area) wilach certain criteria or thresholds
which impact on ATM (reduced capacity of airspaoperating categories and
procedures).

To facilitate end user’s decision making processification can be made in various
ways to express in terms that are closely relatethé user decision processes. In
particular:

(A) Time-success diagram

This can be constructed based on past performahdbeosystem, to provide a
“tolerance limit” that users define what can be sidared acceptable (e.g. the location of
thunderstorm hitting certain holding area, say @0radius region, crosswind reaching certain
thresholds, the onset or cessation of a phenomsunadm a freezing rain has to be predicted
within 10, 20 or 30 minutes), and based on thedmitiens of a “hit", a diagram can be
constructed that allows to determine the likelydl¢giane (warning time before onset) for any
desired threshold of success. As different user neconities (TWR controller, APCH,
Supervisor, ATFM) work to very different time hooizs in their decision making process,
they can be provided with the expected successatathe required time horizon, or, if a
minimum success rate is defined (say 75% of alkksas below IFR conditions need to be



predicted), the available lead time (say 3 houas)lee read from the diagram.

For thunderstorms/significant convection, idenéfion of a “hit” or a “false alarm”
could be made by comparison with ground truth (rdightning) data with reference
to pre-defined categorized criteria (e.g. intenspatial and temporal coverage). The
thresholds are chosen that correspond to operetggations/impact that are directly
relevant to the customer (i.e. user-relevant mea3ur

The performance measures or ability of the forémgssystem to correctly predict the
parameter in the given categories can be measwegelformance indicators such as
Probability of Detection (POD) (or hit rate), Falskrm Ratid (FAR) or other measures of
success (e.g. Critical Success IMdé&SI)) composed from these two. The presentation
could be time-success diagram (Figure 1) or a ogaticy table from which the POD, FAR
and CSI could be computed (Figure 2). Annual perémce can also be presented to provide
a trend of performance (Figure 3).
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Figure 1: Monthly mean CSI of convection forecddifferent colours represent different
methods) as a function of lead time
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Figure 2: Contingency table of crosswind forecastsus crosswind observations

! FAR = (false alarms) / (number of forecasts ofehent)
2 Ccsl = (hits) / (hits + false alarms + misses)
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Figure 3: Year to year performance statistics (RBIDe colour) and FAR (cream colour))
of windshear alert service

In some real-life verification examples, capability forecast thunderstorms or
significant convection hitting certain specific arevhich are of interest to ATM
(typical radius of 20 nindrops rather rapidly with lead time, especiafteathe first
couple of hours (Figure 1). In addition, verificat results indicate that forecasters’
contribution could generally improve the forecaapability as seen in some cases.
This demonstrates a need for manual input to tadkistation of automatic
forecasting systems.

(B) Onset/end time verification

As different ATM users have different lead time uigments for severe weather,
verification could be made on onset time and emdetiof these events. Figure 4
illustrates an example of verification of onset dilmnd end time of thunderstorms.
Generally speaking, performance of onset time febéhan end time forecast.
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Figure 4: Verification of onset time and end tinielmnderstorm forecasts

(C) Object-oriented verification

Forecasts of significant weather given in graphicaim could be expressed in object
form (e.g. severe icing polygon). Where threshdidse been determined for gridded
forecasts (e.g. radar reflectivity exceeding 35 YJBsmilar significant weather objects
could be identified. Location errors of the forstcabjects could be computed by
comparing the location of the forecast object verthat of the actual object, e.g. by
referring to the centroid of the identified objecthe overlapping area as well as the



difference area between the forecast and actuactsbjcould also be computed and
evaluated (Figure 5).
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Figure 5: Difference between the forecast and actjacts (symmetric difference) and
CSl of a precipitation forecast as a function & ldsad time (forecast hour)

(D) Impact-based verification

More sophisticated verification methods includeifieation of weather impact to ATM,
e.g. aircraft route deviations amngeather avoidance fields, which attempt to quantify
whether a pilot will fly near weather hazards; emadion of flight delay or reduction of
airspace capacity. Figure 6 illustrates the “mihapproach in evaluating flow reduction
of a jetway within a sector due to a convectioraare
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Figure 6: Schematic diagram indicating the conoépinincut” in evaluating flow
reduction
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Predictability of weather phenomena

Predictability and performance are location- anditiver-type dependent and also
depend on season, climate and local environmegt,cemplex topography. For
different weather event types, performance couly gaite a lot (Figure 7). POD
and forecast skill score (CSI) are higher for syimopcale weather phenomena, e.g.
approach/depart of cold/warm front. However, foeswscale convective system
(MCS), i.e. severe organized thunderstorm systébi) Bnd forecast skill score could
be significantly lower.
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Figure 7: Performance scores (POD and CSI) of aioreforecasts for three different
weather regimes: MSC, warm front and cold front



